論文の概要: Progressive Batching for Efficient Non-linear Least Squares
- arxiv url: http://arxiv.org/abs/2010.10968v1
- Date: Wed, 21 Oct 2020 13:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 00:27:10.256861
- Title: Progressive Batching for Efficient Non-linear Least Squares
- Title(参考訳): 効率的な非線形最小方形に対するプログレッシブバッチ
- Authors: Huu Le, Christopher Zach, Edward Rosten and Oliver J. Woodford
- Abstract要約: ガウス・ニュートンの基本的な改良のほとんどは、基礎となる問題構造の空間性を保証するか、あるいは活用して計算速度を上げることである。
我々の研究は、機械学習と統計の両方からアイデアを借用し、収束を保証するとともに、必要な計算量を大幅に削減する非線形最小二乗に対するアプローチを提案する。
- 参考スコア(独自算出の注目度): 31.082253632197023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-linear least squares solvers are used across a broad range of offline and
real-time model fitting problems. Most improvements of the basic Gauss-Newton
algorithm tackle convergence guarantees or leverage the sparsity of the
underlying problem structure for computational speedup. With the success of
deep learning methods leveraging large datasets, stochastic optimization
methods received recently a lot of attention. Our work borrows ideas from both
stochastic machine learning and statistics, and we present an approach for
non-linear least-squares that guarantees convergence while at the same time
significantly reduces the required amount of computation. Empirical results
show that our proposed method achieves competitive convergence rates compared
to traditional second-order approaches on common computer vision problems, such
as image alignment and essential matrix estimation, with very large numbers of
residuals.
- Abstract(参考訳): 非線形最小二乗解法は、広範囲のオフラインおよびリアルタイムモデル適合問題で用いられる。
gauss-newtonアルゴリズムのほとんどの改良は収束保証に取り組み、計算の高速化のために基礎となる問題構造のスパース性を活用する。
大規模データセットを活用したディープラーニング手法の成功により、確率最適化手法は近年多くの注目を集めている。
我々の研究は確率的機械学習と統計学の両方からアイデアを借用し、収束を保証しつつ計算量を大幅に削減する非線形最小二乗に対するアプローチを提案する。
実験により,提案手法は,画像アライメントや本質的行列推定などのコンピュータビジョン問題に対する従来の2次アプローチと比較して,非常に多数の残差を持つ競合収束率を実現することを示す。
関連論文リスト
- Effectively Leveraging Momentum Terms in Stochastic Line Search Frameworks for Fast Optimization of Finite-Sum Problems [0.5156484100374059]
過度にパラメータ化された状態における深度最適化のための最近の線探索手法と運動量方向との関係について検討する。
モーメントパラメータの定義にデータ持続性、共役型ルールの混合を利用するアルゴリズムを導入する。
結果のアルゴリズムは、他の一般的な手法よりも優れていることを実証的に示している。
論文 参考訳(メタデータ) (2024-11-11T16:26:33Z) - Optimizing the Optimal Weighted Average: Efficient Distributed Sparse Classification [50.406127962933915]
ACOWAは、小さなランタイムの増加とともに、顕著に優れた近似品質を達成するための追加の通信を可能にする。
その結果、ACOWAは経験的リスク最小化に忠実で、他の分散アルゴリズムよりもかなり高い精度で解が得られることがわかった。
論文 参考訳(メタデータ) (2024-06-03T19:43:06Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Accelerated, Optimal, and Parallel: Some Results on Model-Based
Stochastic Optimization [33.71051480619541]
凸最適化問題を解決するためのモデルベース手法の近似近位点(aProx)ファミリを拡張します。
我々は、非漸近収束保証と、ミニバッチサイズの線形スピードアップを提供する加速スキームを提供する。
我々は,「補間」問題に対する新しい基本定数を同定し,収束率の改善と下界の整合性を示す。
論文 参考訳(メタデータ) (2021-01-07T18:58:39Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix [2.345015036605934]
統計的問題をスパース係数回帰として定式化し、分割コンカレントアプローチでそれに取り組む。
第1段階分割では、タスクを1組の同時並列推定(CURE)問題に単純化するための2つの潜時並列アプローチについて検討する。
第2段階分割では、CUREの全解を効率的に追跡するために、一連の単純な増分経路からなる段階学習手法を革新する。
論文 参考訳(メタデータ) (2020-03-17T19:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。