Mining Misdiagnosis Patterns from Biomedical Literature
- URL: http://arxiv.org/abs/2006.13721v1
- Date: Wed, 24 Jun 2020 13:34:43 GMT
- Title: Mining Misdiagnosis Patterns from Biomedical Literature
- Authors: Cindy Li, Elizabeth Chen, Guergana Savova, Hamish Fraser, Carsten
Eickhoff
- Abstract summary: We find that the most commonly misdiagnosed diseases were often misdiagnosed as many different diseases.
While a misdiagnosis relationship may generally exist, the relationship was often found to be one-sided.
- Score: 8.534433954411409
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diagnostic errors can pose a serious threat to patient safety, leading to
serious harm and even death. Efforts are being made to develop interventions
that allow physicians to reassess for errors and improve diagnostic accuracy.
Our study presents an exploration of misdiagnosis patterns mined from PubMed
abstracts. Article titles containing certain phrases indicating misdiagnosis
were selected and frequencies of these misdiagnoses calculated. We present the
resulting patterns in the form of a directed graph with frequency-weighted
misdiagnosis edges connecting diagnosis vertices. We find that the most
commonly misdiagnosed diseases were often misdiagnosed as many different
diseases, with each misdiagnosis having a relatively low frequency, rather than
as a single disease with greater probability. Additionally, while a
misdiagnosis relationship may generally exist, the relationship was often found
to be one-sided.
Related papers
- Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - AI-based Anomaly Detection for Clinical-Grade Histopathological Diagnostics [24.833696455985795]
In clinical reality, only few diseases are common, whereas the majority of diseases are less frequent.
Current AI models overlook or misclassify these diseases.
We propose a deep anomaly detection approach that only requires training data from common diseases to detect also all less frequent diseases.
arXiv Detail & Related papers (2024-06-21T04:59:19Z) - Towards Reducing Diagnostic Errors with Interpretable Risk Prediction [18.474645862061426]
We propose a method to use LLMs to identify pieces of evidence in patient EHR data that indicate increased or decreased risk of specific diagnoses.
Our ultimate aim is to increase access to evidence and reduce diagnostic errors.
arXiv Detail & Related papers (2024-02-15T17:05:48Z) - Rescuing referral failures during automated diagnosis of domain-shifted
medical images [17.349847762608086]
We show that even state-of-the-art domain generalization approaches fail severely during referral when tested on medical images acquired from a different demographic or using a different technology.
We evaluate novel combinations of robust generalization and post hoc referral approaches, that rescue these failures and achieve significant performance improvements.
arXiv Detail & Related papers (2023-11-28T13:14:55Z) - Towards long-tailed, multi-label disease classification from chest X-ray: Overview of the CXR-LT challenge [59.323306639144526]
Many real-world image recognition problems, such as diagnostic medical imaging exams, are emerging.
Diagnose is both a long-tailed and multi-label problem, as patients often present with multiple findings.
We synthesize common themes, providing recommendations for long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-10-24T18:26:22Z) - Language models are susceptible to incorrect patient self-diagnosis in
medical applications [0.0]
We present a variety of LLMs with multiple-choice questions from U.S. medical board exams modified to include self-diagnostic reports from patients.
Our findings highlight that when a patient proposes incorrect bias-validating information, the diagnostic accuracy of LLMs drop dramatically.
arXiv Detail & Related papers (2023-09-17T19:56:39Z) - Expert Uncertainty and Severity Aware Chest X-Ray Classification by
Multi-Relationship Graph Learning [48.29204631769816]
We re-extract disease labels from CXR reports to make them more realistic by considering disease severity and uncertainty in classification.
Our experimental results show that models considering disease severity and uncertainty outperform previous state-of-the-art methods.
arXiv Detail & Related papers (2023-09-06T19:19:41Z) - Diagnosis Uncertain Models For Medical Risk Prediction [80.07192791931533]
We consider a patient risk model which has access to vital signs, lab values, and prior history but does not have access to a patient's diagnosis.
We show that such all-cause' risk models have good generalization across diagnoses but have a predictable failure mode.
We propose a fix for this problem by explicitly modeling the uncertainty in risk prediction coming from uncertainty in patient diagnoses.
arXiv Detail & Related papers (2023-06-29T23:36:04Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue
Generation [150.52617238140868]
We propose low-resource medical dialogue generation to transfer the diagnostic experience from source diseases to target ones.
We also develop a Graph-Evolving Meta-Learning framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease.
arXiv Detail & Related papers (2020-12-22T13:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.