Diagnosis Uncertain Models For Medical Risk Prediction
- URL: http://arxiv.org/abs/2306.17337v1
- Date: Thu, 29 Jun 2023 23:36:04 GMT
- Title: Diagnosis Uncertain Models For Medical Risk Prediction
- Authors: Alexander Peysakhovich, Rich Caruana, Yin Aphinyanaphongs
- Abstract summary: We consider a patient risk model which has access to vital signs, lab values, and prior history but does not have access to a patient's diagnosis.
We show that such all-cause' risk models have good generalization across diagnoses but have a predictable failure mode.
We propose a fix for this problem by explicitly modeling the uncertainty in risk prediction coming from uncertainty in patient diagnoses.
- Score: 80.07192791931533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a patient risk models which has access to patient features such
as vital signs, lab values, and prior history but does not have access to a
patient's diagnosis. For example, this occurs in a model deployed at intake
time for triage purposes. We show that such `all-cause' risk models have good
generalization across diagnoses but have a predictable failure mode. When the
same lab/vital/history profiles can result from diagnoses with different risk
profiles (e.g. E.coli vs. MRSA) the risk estimate is a probability weighted
average of these two profiles. This leads to an under-estimation of risk for
rare but highly risky diagnoses. We propose a fix for this problem by
explicitly modeling the uncertainty in risk prediction coming from uncertainty
in patient diagnoses. This gives practitioners an interpretable way to
understand patient risk beyond a single risk number.
Related papers
- Towards Reducing Diagnostic Errors with Interpretable Risk Prediction [18.474645862061426]
We propose a method to use LLMs to identify pieces of evidence in patient EHR data that indicate increased or decreased risk of specific diagnoses.
Our ultimate aim is to increase access to evidence and reduce diagnostic errors.
arXiv Detail & Related papers (2024-02-15T17:05:48Z) - Domain constraints improve risk prediction when outcome data is missing [1.6840408099522377]
We show that a machine learning model can accurately estimate risk for both tested and untested patients.
We apply our model to a case study of cancer risk prediction, showing that the model's inferred risk predicts cancer diagnoses.
arXiv Detail & Related papers (2023-12-06T19:49:06Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Advances in Prediction of Readmission Rates Using Long Term Short Term
Memory Networks on Healthcare Insurance Data [1.454498931674109]
30-day hospital readmission is a long standing medical problem that affects patients' morbidity and mortality and costs billions of dollars annually.
We developed a bi-directional Long Short Term Memory (LSTM) Network that is able to use readily available insurance data.
Our results demonstrate that a machine learning model is able to predict risk of inpatient readmission with reasonable accuracy for all patients.
arXiv Detail & Related papers (2022-06-30T19:07:10Z) - A New Approach for Interpretability and Reliability in Clinical Risk
Prediction: Acute Coronary Syndrome Scenario [0.33927193323747895]
We intend to create a new risk assessment methodology that combines the best characteristics of both risk score and machine learning models.
The proposed approach achieved testing results identical to the standard LR, but offers superior interpretability and personalization.
The reliability estimation of individual predictions presented a great correlation with the misclassifications rate.
arXiv Detail & Related papers (2021-10-15T19:33:46Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.