論文の概要: Bayesian Sampling Bias Correction: Training with the Right Loss Function
- arxiv url: http://arxiv.org/abs/2006.13798v1
- Date: Wed, 24 Jun 2020 15:10:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 09:59:14.764383
- Title: Bayesian Sampling Bias Correction: Training with the Right Loss Function
- Title(参考訳): ベイズサンプリングバイアス補正:正しい損失関数を持つトレーニング
- Authors: L. Le Folgoc, V. Baltatzis, A. Alansary, S. Desai, A. Devaraj, S.
Ellis, O. E. Martinez Manzanera, F. Kanavati, A. Nair, J. Schnabel and B.
Glocker
- Abstract要約: 我々は、サンプリングバイアスの存在下でモデルを訓練するために損失関数の族を導出する。
例えば、病理の頻度がトレーニングデータセットのサンプリングレートと異なる場合や、マシンラーニングの実践者がトレーニングデータセットを再バランスする場合などだ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive a family of loss functions to train models in the presence of
sampling bias. Examples are when the prevalence of a pathology differs from its
sampling rate in the training dataset, or when a machine learning practioner
rebalances their training dataset. Sampling bias causes large discrepancies
between model performance in the lab and in more realistic settings. It is
omnipresent in medical imaging applications, yet is often overlooked at
training time or addressed on an ad-hoc basis. Our approach is based on
Bayesian risk minimization. For arbitrary likelihood models we derive the
associated bias corrected loss for training, exhibiting a direct connection to
information gain. The approach integrates seamlessly in the current paradigm of
(deep) learning using stochastic backpropagation and naturally with Bayesian
models. We illustrate the methodology on case studies of lung nodule malignancy
grading.
- Abstract(参考訳): 我々はサンプリングバイアスの存在下でモデルを訓練するために損失関数の族を導出する。
例えば、訓練データセットのサンプリング率と病理の流行が違う場合や、機械学習実践者がトレーニングデータセットを再バランスさせる場合などである。
サンプリングバイアスは、実験室でのモデルパフォーマンスとより現実的な設定の間に大きな相違を引き起こす。
医用画像アプリケーションで広く使われているが、訓練時間やアドホックな方法では見過ごされがちである。
我々のアプローチはベイズリスクの最小化に基づいている。
任意の確率モデルに対して、トレーニングのバイアス補正損失を導出し、情報ゲインへの直接的な接続を示す。
このアプローチは、確率的バックプロパゲーションを用いた(深い)学習の現在のパラダイムと、ベイズモデルと自然にシームレスに統合される。
本研究は肺結節悪性度評価のケーススタディについて述べる。
関連論文リスト
- Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Unmasking Bias in Diffusion Model Training [40.90066994983719]
拡散モデルが画像生成の主流のアプローチとして登場した。
トレーニングの収束が遅く、サンプリングのカラーシフトの問題に悩まされている。
本稿では,これらの障害は,既定のトレーニングパラダイムに固有のバイアスや準最適性に大きく起因していると考えられる。
論文 参考訳(メタデータ) (2023-10-12T16:04:41Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
本稿では, 劣化データのみに基づく生成拡散モデルのための新しいトレーニング手法を提案する。
顔画像と磁気共鳴画像(MRI)の撮影技術について紹介する。
論文 参考訳(メタデータ) (2023-05-22T15:27:20Z) - Towards Robust Visual Question Answering: Making the Most of Biased
Samples via Contrastive Learning [54.61762276179205]
我々は,ビザドサンプルを最大限に活用することで,ロバストなVQAモデルを構築するための新しいコントラスト学習手法 MMBS を提案する。
具体的には、元のトレーニングサンプルからスプリアス相関に関連する情報を排除し、比較学習のための正のサンプルを構築する。
我々は,OODデータセットのVQA-CP v2において,IDデータセットのVQA v2上での堅牢なパフォーマンスを維持しながら,競争性能を達成することで,コントリビューションを検証した。
論文 参考訳(メタデータ) (2022-10-10T11:05:21Z) - Mitigating Catastrophic Forgetting in Scheduled Sampling with Elastic
Weight Consolidation in Neural Machine Translation [15.581515781839656]
最大推定値で訓練された自己回帰モデルは、露出バイアスに悩まされる。
露光バイアスの軽減と出力品質の維持のトレードオフとして, 弾性重み強化(Elastic Weight Consolidation)を提案する。
2つのIWSLT'14翻訳タスクの実験は、我々のアプローチが破滅的な忘れを軽減し、BLEUを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-09-13T20:37:58Z) - Bayesian analysis of the prevalence bias: learning and predicting from
imbalanced data [10.659348599372944]
本稿では,モデル学習のための理論的および計算的枠組みと,有病率バイアスの存在下での予測について述べる。
原則的なトレーニング損失の代替として,要約曲線から操作点を選択することで,テスト時の手順を補完するものだ。
バックプロパゲーションを用いた(深い)学習の現在のパラダイムにシームレスに統合され、ベイズモデルと自然に結合する。
論文 参考訳(メタデータ) (2021-07-31T14:36:33Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
半定量的理論フレームワークを用いて, InfoNCE に最適化された負のサンプル数について検討した。
トレーニングの有効性関数を最大化する$K$値を用いて,最適負サンプリング比を推定する。
論文 参考訳(メタデータ) (2021-05-27T08:38:29Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
ディープニューラルネットワークは教師付き学習タスクに有効であるが、脆弱であることが示されている。
本稿では、生成モデルを利用して、分類器が一般化に失敗するインスタンスを特定し、特徴付ける。
我々のアプローチは、トレーニングセットのクラスラベルに依存しないため、半教師付きでトレーニングされたモデルに適用できる。
論文 参考訳(メタデータ) (2020-10-05T22:13:21Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。