論文の概要: GSURE-Based Diffusion Model Training with Corrupted Data
- arxiv url: http://arxiv.org/abs/2305.13128v2
- Date: Thu, 13 Jun 2024 18:11:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 20:03:08.348054
- Title: GSURE-Based Diffusion Model Training with Corrupted Data
- Title(参考訳): 故障データを用いたGSUREに基づく拡散モデルトレーニング
- Authors: Bahjat Kawar, Noam Elata, Tomer Michaeli, Michael Elad,
- Abstract要約: 本稿では, 劣化データのみに基づく生成拡散モデルのための新しいトレーニング手法を提案する。
顔画像と磁気共鳴画像(MRI)の撮影技術について紹介する。
- 参考スコア(独自算出の注目度): 35.56267114494076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated impressive results in both data generation and downstream tasks such as inverse problems, text-based editing, classification, and more. However, training such models usually requires large amounts of clean signals which are often difficult or impossible to obtain. In this work, we propose a novel training technique for generative diffusion models based only on corrupted data. We introduce a loss function based on the Generalized Stein's Unbiased Risk Estimator (GSURE), and prove that under some conditions, it is equivalent to the training objective used in fully supervised diffusion models. We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI), where the use of undersampled data significantly alleviates data collection costs. Our approach achieves generative performance comparable to its fully supervised counterpart without training on any clean signals. In addition, we deploy the resulting diffusion model in various downstream tasks beyond the degradation present in the training set, showcasing promising results.
- Abstract(参考訳): 拡散モデルは、逆問題、テキストベースの編集、分類など、データ生成と下流タスクの両方において顕著な結果を示している。
しかし、そのようなモデルの訓練は通常、しばしば入手が困難または不可能な大量のクリーン信号を必要とする。
本研究では, 劣化データのみに基づく生成拡散モデルのための新しい学習手法を提案する。
我々は、一般化されたスタインのアンバイアスドリスク推定器(GSURE)に基づく損失関数を導入し、ある条件下では、完全に教師付き拡散モデルで使用される訓練目標と等価であることを示す。
顔画像やMRI(MRI)において、アンダーサンプルデータの使用によりデータ収集コストを大幅に軽減する手法を実証する。
本手法は,クリーン信号のトレーニングを行なわずに,完全教師付きシステムに匹敵する生成性能を実現する。
さらに、トレーニングセットに存在する劣化以外の様々な下流タスクにおいて、結果の拡散モデルをデプロイし、有望な結果を示す。
関連論文リスト
- Integrating Amortized Inference with Diffusion Models for Learning Clean Distribution from Corrupted Images [19.957503854446735]
拡散モデル(DM)は、逆問題を解決するための強力な生成モデルとして登場した。
FlowDiffは条件付き正規化フローモデルを利用して、破損したデータソース上で拡散モデルのトレーニングを容易にする共同トレーニングパラダイムである。
実験の結果,FlowDiffは広範囲の破損したデータソースにわたるクリーンな分布を効果的に学習できることがわかった。
論文 参考訳(メタデータ) (2024-07-15T18:33:20Z) - Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
データ拡張のためのトレーニング不要な拡散型In-Distribution Anomaly GenerationパイプラインであるDIAGを紹介する。
従来の画像生成技術とは異なり、我々は、ドメインの専門家がモデルにマルチモーダルガイダンスを提供する、Human-in-the-loopパイプラインを実装している。
我々は、挑戦的なKSDD2データセットに対する最先端データ拡張アプローチに関して、DIAGの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2024-07-04T14:28:52Z) - An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations [21.411327264448058]
本稿では, 予測最大化(EM)手法を提案し, 劣化した観測から拡散モデルを訓練する。
本手法は, 既知拡散モデル(E-step)を用いた劣化データからのクリーン画像の再構成と, これらの再構成(M-step)に基づく拡散モデル重みの精製とを交互に行う。
この反復過程は、学習された拡散モデルを真のクリーンなデータ分布に徐々に収束させる。
論文 参考訳(メタデータ) (2024-07-01T07:00:17Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
アンビエント拡散(アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散
本稿では,ノイズの多い学習データのみを考慮し,故障のない分布から確実にサンプルを採取する拡散モデルのトレーニングのための最初のフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-20T14:22:12Z) - Ambient Diffusion Posterior Sampling: Solving Inverse Problems with
Diffusion Models trained on Corrupted Data [56.81246107125692]
Ambient Diffusion Posterior Smpling (A-DPS) は、ある種類の腐敗に対して事前訓練された生成モデルである。
A-DPSは、いくつかの画像復元タスクにおいて、クリーンなデータで訓練されたモデルよりも、速度と性能の両方で優れていることが示される。
我々はAmbient Diffusionフレームワークを拡張して、FourierサブサンプルのマルチコイルMRI測定にのみアクセスしてMRIモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-03-13T17:28:20Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Fast Unsupervised Brain Anomaly Detection and Segmentation with
Diffusion Models [1.6352599467675781]
脳画像における異常検出とセグメント分割のための拡散モデルに基づく手法を提案する。
拡散モデルは,2次元CTおよびMRIデータを用いた一連の実験において,自己回帰的アプローチと比較して競争性能が向上する。
論文 参考訳(メタデータ) (2022-06-07T17:30:43Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。