Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules
- URL: http://arxiv.org/abs/2006.13890v2
- Date: Fri, 9 Oct 2020 04:27:42 GMT
- Title: Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules
- Authors: Yamin Li, Jiancheng Yang, Yi Xu, Jingwei Xu, Xiaodan Ye, Guangyu Tao,
Xueqian Xie, Guixue Liu
- Abstract summary: Follow-up serves an important role in the management of pulmonary nodules for lung cancer.
Recent deep learning studies using convolutional neural networks (CNNs) to predict the malignancy score of nodules, only provides clinicians with black-box predictions.
We propose a unified framework, named Nodule Follow-Up Prediction Network (NoFoNet), which predicts the growth of pulmonary nodules with high-quality visual appearances and accurate quantitative results.
- Score: 15.069141581681016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Follow-up serves an important role in the management of pulmonary nodules for
lung cancer. Imaging diagnostic guidelines with expert consensus have been made
to help radiologists make clinical decision for each patient. However, tumor
growth is such a complicated process that it is difficult to stratify high-risk
nodules from low-risk ones based on morphologic characteristics. On the other
hand, recent deep learning studies using convolutional neural networks (CNNs)
to predict the malignancy score of nodules, only provides clinicians with
black-box predictions. To this end, we propose a unified framework, named
Nodule Follow-Up Prediction Network (NoFoNet), which predicts the growth of
pulmonary nodules with high-quality visual appearances and accurate
quantitative results, given any time interval from baseline observations. It is
achieved by predicting future displacement field of each voxel with a WarpNet.
A TextureNet is further developed to refine textural details of WarpNet
outputs. We also introduce techniques including Temporal Encoding Module and
Warp Segmentation Loss to encourage time-aware and shape-aware representation
learning. We build an in-house follow-up dataset from two medical centers to
validate the effectiveness of the proposed method. NoFoNet significantly
outperforms direct prediction by a U-Net in terms of visual quality; more
importantly, it demonstrates accurate differentiating performance between high-
and low-risk nodules. Our promising results suggest the potentials in computer
aided intervention for lung nodule management.
Related papers
- Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
Lung cancer ranks as one of the leading causes of cancer diagnosis and is the foremost cause of cancer-related mortality worldwide.
The segmentation of lung nodules plays a critical role in aiding physicians in distinguishing between malignant and benign lesions.
We introduce a novel model for segmenting lung nodules in computed tomography (CT) images, leveraging a deep learning framework that integrates segmentation and classification processes.
arXiv Detail & Related papers (2024-10-26T11:58:12Z) - Two-step interpretable modeling of Intensive Care Acquired Infections [0.0]
We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models.
The aim is two-fold: to improve the predictive power while maintaining interpretability of the models.
arXiv Detail & Related papers (2023-01-26T14:54:17Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Automated Segmentation and Recurrence Risk Prediction of Surgically
Resected Lung Tumors with Adaptive Convolutional Neural Networks [3.5413688566798096]
Lung cancer is the leading cause of cancer related mortality by a significant margin.
In this paper, we explore the use of convolutional neural networks (CNNs) for the segmentation and recurrence risk prediction of lung tumors.
To the best of our knowledge, it is the first fully automated segmentation and recurrence risk prediction system.
arXiv Detail & Related papers (2022-09-17T23:06:22Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction
of Lung Nodules on CT Scans [13.882367716329387]
In the management of lung nodules, we are desirable to predict evolution in terms of its diameter variation on Computed Tomography (CT) scans.
In order to improve the performance of growth trend prediction for lung nodules, it is vital to compare the changes of the same nodule in consecutive CT scans.
arXiv Detail & Related papers (2022-06-07T06:44:56Z) - Enhancing Cancer Prediction in Challenging Screen-Detected Incident Lung
Nodules Using Time-Series Deep Learning [2.744770849264355]
Lung cancer screening (LCS) using annual low-dose computed tomography (CT) scanning has been proven to significantly reduce lung cancer mortality.
Improving risk stratification of malignancy risk in lung nodules can be enhanced using machine/deep learning algorithms.
Here we show the performance of our time-series deep learning model (DeepCAD-NLM-L) which integrates multi-model information across three longitudinal data domains.
arXiv Detail & Related papers (2022-03-30T18:40:36Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.