Two-step interpretable modeling of Intensive Care Acquired Infections
- URL: http://arxiv.org/abs/2301.11146v2
- Date: Wed, 6 Mar 2024 13:46:06 GMT
- Title: Two-step interpretable modeling of Intensive Care Acquired Infections
- Authors: Giacomo Lancia, Meri Varkila, Olaf Cremer, Cristian Spitoni
- Abstract summary: We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models.
The aim is two-fold: to improve the predictive power while maintaining interpretability of the models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel methodology for integrating high resolution longitudinal
data with the dynamic prediction capabilities of survival models. The aim is
two-fold: to improve the predictive power while maintaining interpretability of
the models. To go beyond the black box paradigm of artificial neural networks,
we propose a parsimonious and robust semi-parametric approach (i.e., a
landmarking competing risks model) that combines routinely collected
low-resolution data with predictive features extracted from a convolutional
neural network, that was trained on high resolution time-dependent information.
We then use saliency maps to analyze and explain the extra predictive power of
this model. To illustrate our methodology, we focus on healthcare-associated
infections in patients admitted to an intensive care unit.
Related papers
- Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
This study aims to identify the most favorable material model for human brain tissue.
We apply artificial neural network and multiple regression methods to a generalization of widely accepted classic models.
arXiv Detail & Related papers (2023-10-16T18:49:59Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Explainable Deep Learning for Tumor Dynamic Modeling and Overall
Survival Prediction using Neural-ODE [0.0]
We propose the use of Tumor Dynamic Neural-ODE as a pharmacology-informed neural network.
We show that TDNODE overcomes a key limitation of existing models in its ability to make unbiased predictions from truncated data.
We show that the generated metrics can be used to predict patients' overall survival (OS) with high accuracy.
arXiv Detail & Related papers (2023-08-02T18:08:27Z) - Visual Interpretable and Explainable Deep Learning Models for Brain
Tumor MRI and COVID-19 Chest X-ray Images [0.0]
We evaluate attribution methods for illuminating how deep neural networks analyze medical images.
We attribute predictions from brain tumor MRI and COVID-19 chest X-ray datasets made by recent deep convolutional neural network models.
arXiv Detail & Related papers (2022-08-01T16:05:14Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning [14.03923026690186]
We propose an uncertainty-aware deep kernel learning model which permits the estimation of the uncertainty in the prediction.
In most cases, the proposed model shows better performance compared to common architectures.
Our model can also be used to detect challenging and controversial test samples.
arXiv Detail & Related papers (2021-06-01T17:09:47Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.