論文の概要: Consistency of Anchor-based Spectral Clustering
- arxiv url: http://arxiv.org/abs/2006.13984v2
- Date: Sat, 27 Jun 2020 12:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 10:08:41.906753
- Title: Consistency of Anchor-based Spectral Clustering
- Title(参考訳): アンカーに基づくスペクトルクラスタリングの一貫性
- Authors: Henry-Louis de Kergorlay, Desmond John Higham
- Abstract要約: アンカーベースの手法は、スペクトルクラスタリングアルゴリズムの計算複雑性を低減する。
厳密な分析が可能であり,実践に有効であることを示す。
我々はChenとCaiの最先端のLCC法と競合することが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anchor-based techniques reduce the computational complexity of spectral
clustering algorithms. Although empirical tests have shown promising results,
there is currently a lack of theoretical support for the anchoring approach. We
define a specific anchor-based algorithm and show that it is amenable to
rigorous analysis, as well as being effective in practice. We establish the
theoretical consistency of the method in an asymptotic setting where data is
sampled from an underlying continuous probability distribution. In particular,
we provide sharp asymptotic conditions for the algorithm parameters which
ensure that the anchor-based method can recover with high probability disjoint
clusters that are mutually separated by a positive distance. We illustrate the
performance of the algorithm on synthetic data and explain how the theoretical
convergence analysis can be used to inform the practical choice of parameter
scalings. We also test the accuracy and efficiency of the algorithm on two
large scale real data sets. We find that the algorithm offers clear advantages
over standard spectral clustering. We also find that it is competitive with the
state-of-the-art LSC method of Chen and Cai (Twenty-Fifth AAAI Conference on
Artificial Intelligence, 2011), while having the added benefit of a consistency
guarantee.
- Abstract(参考訳): アンカーベースの手法はスペクトルクラスタリングアルゴリズムの計算複雑性を低減する。
実証実験では有望な結果が得られたが、現在アンカーアプローチに対する理論的サポートが不足している。
我々は、特定のアンカーベースのアルゴリズムを定義し、厳密な分析が可能であり、実際は有効であることを示す。
本研究では, 連続確率分布からデータをサンプリングする漸近的条件下での手法の理論的整合性を確立する。
特に,アルゴリズムパラメータに対して鋭い漸近条件を提供し,正距離で互いに分離された高確率不整合クラスタでアンカーベースの手法が回復できることを保証する。
本稿では,合成データに対するアルゴリズムの性能を説明し,理論収束解析がパラメータスケーリングの実用的選択にどのように役立つかを説明する。
また,2つの大規模実データ集合上でアルゴリズムの精度と効率をテストした。
このアルゴリズムは標準スペクトルクラスタリングよりも明確な利点がある。
また,Chen と Cai の最先端の LSC 手法 (第25回AIAAI 会議 2011) と競合する一方で,一貫性保証の付加的なメリットがあることが判明した。
関連論文リスト
- Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
本稿では,コミュニケーション効率に量子化を組み込んだ新しい階層型フェデレーション学習アルゴリズムを提案する。
最適性ギャップと収束率を評価するための包括的な分析フレームワークを提供する。
この結果から,本アルゴリズムはパラメータの範囲で常に高い学習精度を達成できることが判明した。
論文 参考訳(メタデータ) (2024-03-03T15:40:24Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Adversarially robust clustering with optimality guarantees [7.0830450321883935]
我々はガウス以下の混合系から得られるデータポイントをクラスタリングする問題を考察する。
ロイドアルゴリズムのような最適ラベル誤りを確実に達成する既存の手法は、通常、外れ値に対して脆弱である。
本稿では, 対数外乱が存在する場合でも, 座標中央値に基づく単純なロバストアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-16T17:17:07Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
本稿では,大規模なスパースネットワークのクラスにおいて,高い確率で完全クラスタリングを実現するスペクトルアルゴリズムを提案する。
本手法は,スペクトルクラスタリングによる一貫した潜在構造回復を保証する最初の方法である。
論文 参考訳(メタデータ) (2022-05-17T01:41:06Z) - Adaptive Resonance Theory-based Topological Clustering with a Divisive
Hierarchical Structure Capable of Continual Learning [8.581682204722894]
本稿では、データポイントの分布から類似度閾値を自動的に推定する機構を備えたARTベースのトポロジカルクラスタリングアルゴリズムを提案する。
情報抽出性能を向上させるために,連続学習が可能な分割階層クラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-01-26T02:34:52Z) - An iterative clustering algorithm for the Contextual Stochastic Block
Model with optimality guarantees [4.007017852999008]
本稿では,ノードの側情報を持つクラスタネットワークに対して,新たな反復アルゴリズムを提案する。
このアルゴリズムは文脈対称性ブロックモデルの下で最適であることを示す。
論文 参考訳(メタデータ) (2021-12-20T12:04:07Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
定常ステップサイズに対する強化学習アルゴリズムの理論解析に対する分布的アプローチを提案する。
本稿では,TD($lambda$)や$Q$-Learningのような値ベースの手法が,関数の分布空間で制約のある更新ルールを持つことを示す。
論文 参考訳(メタデータ) (2020-03-27T05:13:29Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
直感的で実装が簡単で,最先端のアルゴリズムと競合する,スパースk平均クラスタリングのための新しいフレームワークを提案する。
本手法は,属性のサブセットのクラスタリングや部分的に観測されたデータ設定など,タスク固有のアルゴリズムに容易に一般化できる。
論文 参考訳(メタデータ) (2020-02-20T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。