論文の概要: An iterative clustering algorithm for the Contextual Stochastic Block
Model with optimality guarantees
- arxiv url: http://arxiv.org/abs/2112.10467v1
- Date: Mon, 20 Dec 2021 12:04:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-21 16:11:23.823594
- Title: An iterative clustering algorithm for the Contextual Stochastic Block
Model with optimality guarantees
- Title(参考訳): 最適性保証付き文脈確率ブロックモデルに対する反復的クラスタリングアルゴリズム
- Authors: Guillaume Braun, Hemant Tyagi and Christophe Biernacki
- Abstract要約: 本稿では,ノードの側情報を持つクラスタネットワークに対して,新たな反復アルゴリズムを提案する。
このアルゴリズムは文脈対称性ブロックモデルの下で最適であることを示す。
- 参考スコア(独自算出の注目度): 4.007017852999008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world networks often come with side information that can help to improve
the performance of network analysis tasks such as clustering. Despite a large
number of empirical and theoretical studies conducted on network clustering
methods during the past decade, the added value of side information and the
methods used to incorporate it optimally in clustering algorithms are
relatively less understood. We propose a new iterative algorithm to cluster
networks with side information for nodes (in the form of covariates) and show
that our algorithm is optimal under the Contextual Symmetric Stochastic Block
Model. Our algorithm can be applied to general Contextual Stochastic Block
Models and avoids hyperparameter tuning in contrast to previously proposed
methods. We confirm our theoretical results on synthetic data experiments where
our algorithm significantly outperforms other methods, and show that it can
also be applied to signed graphs. Finally we demonstrate the practical interest
of our method on real data.
- Abstract(参考訳): 現実世界のネットワークには、クラスタリングなどのネットワーク分析タスクのパフォーマンス向上に役立つサイド情報があることが多い。
ネットワーククラスタリング手法について過去10年間に多くの経験的・理論的研究を行ったが、側面情報の付加価値とクラスタリングアルゴリズムに最適に組み込む手法は比較的理解されていない。
本稿では,ノードの側情報(共変量)を持つクラスタネットワークに対する新しい反復アルゴリズムを提案し,このアルゴリズムがコンテキスト対称確率ブロックモデルの下で最適であることを示す。
本アルゴリズムは, 一般的な文脈確率ブロックモデルに適用でき, 提案手法とは対照的にハイパーパラメータチューニングを回避できる。
我々は,アルゴリズムが他の手法を著しく上回る合成データ実験の理論的結果を確認し,符号付きグラフにも適用可能であることを示す。
最後に,本手法の現実データに対する実用的関心を示す。
関連論文リスト
- Efficient Fairness-Performance Pareto Front Computation [51.558848491038916]
最適公正表現はいくつかの有用な構造特性を持つことを示す。
そこで,これらの近似問題は,凹凸プログラミング法により効率的に解けることを示す。
論文 参考訳(メタデータ) (2024-09-26T08:46:48Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
本稿では,コミュニケーション効率に量子化を組み込んだ新しい階層型フェデレーション学習アルゴリズムを提案する。
最適性ギャップと収束率を評価するための包括的な分析フレームワークを提供する。
この結果から,本アルゴリズムはパラメータの範囲で常に高い学習精度を達成できることが判明した。
論文 参考訳(メタデータ) (2024-03-03T15:40:24Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - A Parameter-free Adaptive Resonance Theory-based Topological Clustering
Algorithm Capable of Continual Learning [20.995946115633963]
本稿では,パラメータ推定手法を導入して連続学習が可能な,パラメータフリーのARTに基づく新しいトポロジクラスタリングアルゴリズムを提案する。
合成および実世界のデータセットによる実験結果から,提案アルゴリズムはパラメータの事前特定なしに,最先端のクラスタリングアルゴリズムよりも優れたクラスタリング性能を有することが示された。
論文 参考訳(メタデータ) (2023-05-01T01:04:07Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Block Markov Chainsのクラスタリングアルゴリズムは理論的最適性を保証する。
特に、私たちのシーケンシャルデータは、ヒトのDNA、テキスト、動物運動データ、金融市場から派生しています。
ブロックマルコフ連鎖モデルの仮定は、実際に探索データ解析において有意義な洞察を得られることが判明した。
論文 参考訳(メタデータ) (2022-10-04T15:22:39Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z) - Consistency of Anchor-based Spectral Clustering [0.0]
アンカーベースの手法は、スペクトルクラスタリングアルゴリズムの計算複雑性を低減する。
厳密な分析が可能であり,実践に有効であることを示す。
我々はChenとCaiの最先端のLCC法と競合することが判明した。
論文 参考訳(メタデータ) (2020-06-24T18:34:41Z) - Hyperspectral Unmixing Network Inspired by Unfolding an Optimization
Problem [2.4016406737205753]
ハイパースペクトル画像(HSI)アンミックスタスクは本質的に逆問題であり、最適化アルゴリズムによってよく解決される。
本稿では,U-ADMM-AENetとU-ADMM-BUNetという2つの新しいネットワークアーキテクチャを提案する。
本研究は,機械学習の文献において,展開された構造が対応する解釈を見つけることを示し,提案手法の有効性をさらに示すものである。
論文 参考訳(メタデータ) (2020-05-21T18:49:45Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
直交群 $O(d)$ 上の幾何駆動最適化アルゴリズムの新しいクラスを示す。
提案手法は,深層,畳み込み,反復的なニューラルネットワーク,強化学習,フロー,メトリック学習など,機械学習のさまざまな分野に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-30T15:37:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。