論文の概要: Subpopulation Data Poisoning Attacks
- arxiv url: http://arxiv.org/abs/2006.14026v3
- Date: Wed, 12 May 2021 17:53:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 10:07:51.991206
- Title: Subpopulation Data Poisoning Attacks
- Title(参考訳): サブポピュレーションデータ中毒攻撃
- Authors: Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, Alina Oprea
- Abstract要約: 機械学習に対する攻撃は、機械学習アルゴリズムが使用するデータの逆修正を誘導し、デプロイ時に出力を選択的に変更する。
本研究では,エフェサブポピュレーションアタック(emphsubpopulation attack)と呼ばれる新たなデータ中毒攻撃を導入する。
サブポピュレーション攻撃のためのモジュラーフレームワークを設計し、異なるビルディングブロックでインスタンス化し、その攻撃がさまざまなデータセットや機械学習モデルに有効であることを示す。
- 参考スコア(独自算出の注目度): 18.830579299974072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning systems are deployed in critical settings, but they might
fail in unexpected ways, impacting the accuracy of their predictions. Poisoning
attacks against machine learning induce adversarial modification of data used
by a machine learning algorithm to selectively change its output when it is
deployed. In this work, we introduce a novel data poisoning attack called a
\emph{subpopulation attack}, which is particularly relevant when datasets are
large and diverse. We design a modular framework for subpopulation attacks,
instantiate it with different building blocks, and show that the attacks are
effective for a variety of datasets and machine learning models. We further
optimize the attacks in continuous domains using influence functions and
gradient optimization methods. Compared to existing backdoor poisoning attacks,
subpopulation attacks have the advantage of inducing misclassification in
naturally distributed data points at inference time, making the attacks
extremely stealthy. We also show that our attack strategy can be used to
improve upon existing targeted attacks. We prove that, under some assumptions,
subpopulation attacks are impossible to defend against, and empirically
demonstrate the limitations of existing defenses against our attacks,
highlighting the difficulty of protecting machine learning against this threat.
- Abstract(参考訳): 機械学習システムは重要な設定でデプロイされるが、予期せぬ方法で失敗する可能性があり、予測の正確性に影響を及ぼす。
機械学習に対する攻撃は、機械学習アルゴリズムが使用するデータの逆修正を誘導し、デプロイ時に出力を選択的に変更する。
本研究では,データセットが大規模かつ多様である場合,特に重要となる<emph{subpopulation attack>と呼ばれる新しいデータ中毒攻撃を提案する。
サブポピュレーション攻撃のためのモジュラーフレームワークを設計し、異なるビルディングブロックでインスタンス化し、その攻撃がさまざまなデータセットや機械学習モデルに有効であることを示す。
さらに,インフルエンス関数と勾配最適化手法を用いて,連続領域における攻撃を最適化する。
既存のバックドア中毒攻撃と比較して、サブポピュレーション攻撃は推論時に自然に分散したデータポイントの誤分類を引き起こす利点があり、攻撃は極端に盗むことができる。
また,我々の攻撃戦略が既存の標的攻撃の改善に有効であることを示す。
いくつかの仮定の下では、サブポピュレーション攻撃は防御が不可能であることを証明し、我々の攻撃に対する既存の防御の限界を実証的に示し、この脅威に対して機械学習を保護することの難しさを強調する。
関連論文リスト
- FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Adversarial Attacks Neutralization via Data Set Randomization [3.655021726150369]
ディープラーニングモデルに対する敵対的な攻撃は、信頼性とセキュリティに深刻な脅威をもたらす。
本稿では,超空間射影に根ざした新しい防御機構を提案する。
提案手法は,敵対的攻撃に対するディープラーニングモデルの堅牢性を高めていることを示す。
論文 参考訳(メタデータ) (2023-06-21T10:17:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
本研究では,データ固有の敵インスタンスから,データに依存しない被害者モデル(VM)情報を推測できるかどうかを問う。
我々は,135件の被害者モデルから生成された7種類の攻撃に対して,敵攻撃のデータセットを収集する。
単純な教師付きモデル解析ネットワーク(MPN)は、見えない敵攻撃からVM属性を推測できることを示す。
論文 参考訳(メタデータ) (2023-03-13T21:21:49Z) - The Space of Adversarial Strategies [6.295859509997257]
機械学習モデルにおける最悪のケース動作を誘発するインプットである逆例は、過去10年間に広く研究されてきた。
最悪の場合(すなわち最適な)敵を特徴づける体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-09-09T20:53:11Z) - Membership-Doctor: Comprehensive Assessment of Membership Inference
Against Machine Learning Models [11.842337448801066]
本稿では,様々なメンバーシップ推論攻撃と防衛の大規模測定を行う。
脅威モデル(例えば、同一構造や、シャドーモデルとターゲットモデルとの同一分布)のいくつかの仮定は不要である。
また、実験室のデータセットではなく、インターネットから収集された実世界のデータに対する攻撃を最初に実施しました。
論文 参考訳(メタデータ) (2022-08-22T17:00:53Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Influence Based Defense Against Data Poisoning Attacks in Online
Learning [9.414651358362391]
データ中毒は、攻撃者が少数のデータを操作して機械学習モデルのパフォーマンスを低下させる攻撃です。
オンライン環境における学習者のモデル上での有毒トレーニングデータによる劣化を最小限に抑える防衛機構を提案する。
論文 参考訳(メタデータ) (2021-04-24T08:39:13Z) - Adversarial Attack Attribution: Discovering Attributable Signals in
Adversarial ML Attacks [0.7883722807601676]
自動運転車やML-as-a-serviceのような生産システムでさえ、逆の入力の影響を受けやすい。
摂動入力は、攻撃を生成するために使われるメソッドに起因できるだろうか?
敵対攻撃属性の概念を導入し、敵対攻撃における攻撃可能信号の発見可能性を調べるための単純な教師付き学習実験フレームワークを作成する。
論文 参考訳(メタデータ) (2021-01-08T08:16:41Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。