論文の概要: Validating psychometric survey responses
- arxiv url: http://arxiv.org/abs/2006.14054v1
- Date: Mon, 8 Jun 2020 14:33:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 01:33:29.860150
- Title: Validating psychometric survey responses
- Title(参考訳): 心理計測サーベイ応答の検証
- Authors: Alberto Mastrotto (1), Anderson Nelson (1), Dev Sharma (1), Ergeta
Muca (1), Kristina Liapchin (1), Luis Losada (1), Mayur Bansal (1), Roman S.
Samarev (2 and 3) ((1) Columbia University, 116th St and Broadway, New York,
NY 10027, USA, (2) dotin Inc, Francisco Ln. 194, 94539, Fremont CA, USA, (3)
Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5/1, 105005,
Moscow, Russia)
- Abstract要約: 本稿では,機械学習技術を用いて,調査回答におけるユーザの妥当性を分類する手法を提案する。
本手法は,Webサーベイにおけるユーザマウスの活動の収集と,特定の回答を分析せずに調査の妥当性の予測を高速化することに基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach to classify user validity in survey responses by using
a machine learning techniques. The approach is based on collecting user mouse
activity on web-surveys and fast predicting validity of the survey in general
without analysis of specific answers. Rule based approach, LSTM and HMM models
are considered. The approach might be used in web-survey applications to detect
suspicious users behaviour and request from them proper answering instead of
false data recording.
- Abstract(参考訳): 機械学習技術を用いて,調査回答におけるユーザの有効性を分類する手法を提案する。
本手法は,Webサーベイにおけるユーザマウスの活動の収集と,特定の回答を分析せずに調査の有効性を推定することに基づいている。
ルールベースアプローチ、LSTMおよびHMMモデルを検討する。
このアプローチは、疑わしいユーザの振る舞いを検出し、偽のデータ記録の代わりに適切な回答を要求するWebサーベイアプリケーションで使われるかもしれない。
関連論文リスト
- Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
我々は,大言語モデルが一般ドメインでの応答をいつ無視すべきかを決定するための,原則化された手順を開発する。
我々は、幻覚率(エラー率)の厳密な理論的保証の恩恵を受けるため、共形予測手法を活用して、禁忌手順を開発する。
実験によって得られた共形禁忌法は, 種々の閉書, オープンドメイン生成質問応答データセットに, 幻覚率を確実に拘束する。
論文 参考訳(メタデータ) (2024-04-04T11:32:03Z) - Towards Reliable and Factual Response Generation: Detecting Unanswerable
Questions in Information-Seeking Conversations [16.99952884041096]
生成的AIモデルは、そのようなシステムに対するユーザの信頼を損なう可能性のある幻覚の課題に直面します。
本稿では,まずコーパス内の関連するパスを識別し,最後にシステム応答にまとめる2段階のプロセスとして,会話情報探索の問題にアプローチする。
具体的には,文レベル分類器を用いて解答の有無を判定し,これらの予測を文レベルに集約し,最後に最終解答可能性推定値に到達する。
論文 参考訳(メタデータ) (2024-01-21T10:15:36Z) - Evaluating the Ebb and Flow: An In-depth Analysis of Question-Answering Trends across Diverse Platforms [4.686969290158106]
コミュニティ質問回答(Community Question Answering, CQA)プラットフォームは,クエリに対する迅速な応答をユーザに提供することで,着実に人気を集めている。
本稿では,これらの要因を,人気の高い6つのCQAプラットフォームのコンテキスト内で調査する。
論文 参考訳(メタデータ) (2023-09-12T05:03:28Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Socratic Pretraining: Question-Driven Pretraining for Controllable
Summarization [89.04537372465612]
ソクラティック事前訓練は、要約タスクにおける制御性を改善するために設計された、質問駆動で教師なし事前訓練の目的である。
以上の結果から,Socraticプレトレーニングはタスク固有のラベル付きデータ要件を半分に削減することがわかった。
論文 参考訳(メタデータ) (2022-12-20T17:27:10Z) - Canary in a Coalmine: Better Membership Inference with Ensembled
Adversarial Queries [53.222218035435006]
私たちは、差別的で多様なクエリを最適化するために、逆ツールを使用します。
我々の改善は既存の方法よりもはるかに正確な会員推定を実現している。
論文 参考訳(メタデータ) (2022-10-19T17:46:50Z) - Open vs Closed-ended questions in attitudinal surveys -- comparing,
combining, and interpreting using natural language processing [3.867363075280544]
トピックモデリングは、オープンな応答から情報を抽出する時間を著しく短縮する可能性がある。
本研究はトピックモデリングを用いて,オープンエンド質問から情報を抽出し,その性能をクローズドエンド応答と比較する。
論文 参考訳(メタデータ) (2022-05-03T06:01:03Z) - Predicting respondent difficulty in web surveys: A machine-learning
approach based on mouse movement features [3.6944296923226316]
本稿では,マウス追跡データの予測値について,回答者の難易度について検討する。
我々は、回答者の就業履歴と人口統計情報に関する調査データを用いている。
そこで,本研究では,基本マウスの行動を調整するパーソナライズ手法を開発し,その性能を評価する。
論文 参考訳(メタデータ) (2020-11-05T10:54:33Z) - Quickest Intruder Detection for Multiple User Active Authentication [74.5256211285431]
我々は,Multiple-user Quickest Intruder Detection (MQID)アルゴリズムを定式化する。
より少ない観測サンプルで侵入者検出を行うデータ効率のシナリオにアルゴリズムを拡張した。
顔のモダリティに基づく2つのAAデータセットに対する提案手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-06-21T21:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。