論文の概要: Background Knowledge Injection for Interpretable Sequence Classification
- arxiv url: http://arxiv.org/abs/2006.14248v1
- Date: Thu, 25 Jun 2020 08:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 03:03:39.657260
- Title: Background Knowledge Injection for Interpretable Sequence Classification
- Title(参考訳): 解釈可能なシーケンス分類のための背景知識注入
- Authors: Severin Gsponer, Luca Costabello, Chan Le Van, Sumit Pai, Christophe
Gueret, Georgiana Ifrim, Freddy Lecue
- Abstract要約: 本稿では,予測能力と解釈可能性のバランスをとる新しいシーケンス学習アルゴリズムを提案する。
我々は、単語やグラフの埋め込みによって注入された背景知識によって生成されるシンボル群を用いて、古典的なサブシーケンス特徴空間を拡張した。
また,シンボル埋め込みに基づく記号特徴集合の解釈可能性を評価するための新しい尺度を提案する。
- 参考スコア(独自算出の注目度): 13.074542699823933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequence classification is the supervised learning task of building models
that predict class labels of unseen sequences of symbols. Although accuracy is
paramount, in certain scenarios interpretability is a must. Unfortunately, such
trade-off is often hard to achieve since we lack human-independent
interpretability metrics. We introduce a novel sequence learning algorithm,
that combines (i) linear classifiers - which are known to strike a good balance
between predictive power and interpretability, and (ii) background knowledge
embeddings. We extend the classic subsequence feature space with groups of
symbols which are generated by background knowledge injected via word or graph
embeddings, and use this new feature space to learn a linear classifier. We
also present a new measure to evaluate the interpretability of a set of
symbolic features based on the symbol embeddings. Experiments on human activity
recognition from wearables and amino acid sequence classification show that our
classification approach preserves predictive power, while delivering more
interpretable models.
- Abstract(参考訳): シーケンス分類は、目に見えない記号列のクラスラベルを予測するモデルを構築するための教師付き学習タスクである。
正確性は最重要だが、あるシナリオでは解釈性は必須である。
残念ながら、人間に依存しない解釈可能性の指標が欠けているため、このようなトレードオフは達成が難しいことが多い。
そこで我々は,新しいシーケンス学習アルゴリズムを提案する。
(i)線形分類器-予測力と解釈可能性のバランスが良いことが知られているもの
(ii)背景知識の埋め込み。
従来のサブシーケンスの特徴空間を,単語やグラフの埋め込みによる背景知識によって生成される記号群で拡張し,この特徴空間を用いて線形分類器を学習する。
また,シンボル埋め込みに基づく記号特徴集合の解釈可能性を評価するための新しい尺度を提案する。
ウェアラブルとアミノ酸配列の分類による人間の行動認識実験では,より解釈可能なモデルを提供しながら,予測能力を維持していることが示された。
関連論文リスト
- Simple and Interpretable Probabilistic Classifiers for Knowledge Graphs [0.0]
本稿では,単純な信念ネットワークの学習に基づく帰納的アプローチについて述べる。
このようなモデルを(確率的な)公理(あるいは規則)に変換する方法を示す。
論文 参考訳(メタデータ) (2024-07-09T17:05:52Z) - A Multi-Grained Self-Interpretable Symbolic-Neural Model For
Single/Multi-Labeled Text Classification [29.075766631810595]
本稿では,テキストのクラスラベルを選挙区木から明示的に予測するシンボリック・ニューラルモデルを提案する。
構造化言語モデルが自己教師型で選挙区木を予測することを学ぶと、訓練データとして、原文と文レベルのラベルしか必要としない。
実験により,下流タスクにおける予測精度が向上できることが実証された。
論文 参考訳(メタデータ) (2023-03-06T03:25:43Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
本研究では,新しいクラスに移動可能な分類の表現を基礎モデルで学習する能力について検討する。
クラス-機能-変数の崩壊の場合,新しいクラスで学習した特徴マップのわずかな誤差が小さいことを示す。
論文 参考訳(メタデータ) (2022-12-23T18:46:05Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Intersection Regularization for Extracting Semantic Attributes [72.53481390411173]
本稿では,ネットワーク抽出した特徴が意味属性のセットと一致するように,教師付き分類の問題を考える。
例えば、鳥類のイメージを種に分類することを学ぶとき、動物学者が鳥類を分類するために使用する特徴の出現を観察したい。
本稿では,複数層パーセプトロン(MLP)と並列決定木を併用した,離散的なトップレベルアクティベーションを持つニューラルネットワークのトレーニングを提案する。
論文 参考訳(メタデータ) (2021-03-22T14:32:44Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
線形多クラス分類の最初の現代的精度解析を行う。
分析の結果,分類精度は分布に依存していることがわかった。
得られた洞察は、他の分類アルゴリズムの正確な理解の道を開くかもしれない。
論文 参考訳(メタデータ) (2020-11-16T05:17:29Z) - Network Classifiers Based on Social Learning [71.86764107527812]
空間と時間に対して独立に訓練された分類器を結合する新しい手法を提案する。
提案したアーキテクチャは、ラベルのないデータで時間とともに予測性能を改善することができる。
この戦略は高い確率で一貫した学習をもたらすことが示され、未訓練の分類器に対して頑健な構造が得られる。
論文 参考訳(メタデータ) (2020-10-23T11:18:20Z) - A Framework to Learn with Interpretation [2.3741312212138896]
本稿では,予測モデルとその関連解釈モデルを共同で学習する新しい枠組みを提案する。
我々は,選択した隠れ層の出力を入力として取り込む,高レベル属性関数の小型辞書を求める。
学習した機能を視覚化する詳細なパイプラインも開発されている。
論文 参考訳(メタデータ) (2020-10-19T09:26:28Z) - Interpretable Sequence Classification via Discrete Optimization [26.899228003677138]
医療監視や侵入検知といった多くの応用において、早期分類は介入を促すために不可欠である。
本研究では、進化する観測トレースから早期分類を好む配列分類器を学習する。
我々の分類器は解釈可能であり, 説明, 反実的推論, 人為的ループ修正を行う。
論文 参考訳(メタデータ) (2020-10-06T15:31:07Z) - Latent Embedding Feedback and Discriminative Features for Zero-Shot
Classification [139.44681304276]
ゼロショット学習は、トレーニング中にデータが利用できない、見えないカテゴリを分類することを目的としている。
Generative Adrial Networksは、クラス固有のセマンティック埋め込みを利用して、目に見えないクラス機能を合成する。
我々は,ゼロショット学習のすべての段階において,意味的一貫性を強制することを提案する。
論文 参考訳(メタデータ) (2020-03-17T17:34:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。