論文の概要: Empirical Study on the Benefits of Multiobjectivization for Solving
Single-Objective Problems
- arxiv url: http://arxiv.org/abs/2006.14423v1
- Date: Thu, 25 Jun 2020 14:04:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 02:56:20.196249
- Title: Empirical Study on the Benefits of Multiobjectivization for Solving
Single-Objective Problems
- Title(参考訳): 単目的問題に対する多目的化の利点に関する実証的研究
- Authors: Vera Steinhoff and Pascal Kerschke and Christian Grimme
- Abstract要約: 局所オプティマはしばしばアルゴリズムの進行を防ぎ、深刻な脅威を引き起こす。
マルチオブジェクトの勾配に基づく高度な可視化技術を用いて,出現するマルチオブジェクトの景観の特性を図示し,考察した。
我々は,多目的COCOMOGSAがこれらの特性を利用して局所トラップを克服できることを実証的に示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When dealing with continuous single-objective problems, multimodality poses
one of the biggest difficulties for global optimization. Local optima are often
preventing algorithms from making progress and thus pose a severe threat. In
this paper we analyze how single-objective optimization can benefit from
multiobjectivization by considering an additional objective. With the use of a
sophisticated visualization technique based on the multi-objective gradients,
the properties of the arising multi-objective landscapes are illustrated and
examined. We will empirically show that the multi-objective optimizer MOGSA is
able to exploit these properties to overcome local traps. The performance of
MOGSA is assessed on a testbed of several functions provided by the COCO
platform. The results are compared to the local optimizer Nelder-Mead.
- Abstract(参考訳): 連続的な単一目的問題を扱う場合、マルチモダリティはグローバル最適化の最大の困難の1つとなる。
ローカルオプティマはアルゴリズムの進歩を妨げ、深刻な脅威となることが多い。
本稿では, 単目的最適化が多目的化のメリットを, 追加目的を考慮し分析する。
マルチオブジェクトの勾配に基づく高度な可視化技術を用いて,出現するマルチオブジェクトの景観の特性を図示し,考察した。
多目的最適化MOGSAがこれらの特性を利用して局所トラップを克服できることを実証的に示す。
MOGSAの性能はCOCOプラットフォームが提供するいくつかの機能のテストベッド上で評価される。
結果は局所オプティマイザnelder-meadと比較される。
関連論文リスト
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
本稿では,統合エントロピー探索(Joint Entropy Search)と呼ばれるBOのための情報理論獲得関数を提案する。
本稿では, ハイパーボリュームとその重み付き変種の観点から, 合成および実世界の諸問題に対するこの新しいアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-06T13:19:08Z) - MOLE: Digging Tunnels Through Multimodal Multi-Objective Landscapes [0.0]
局所的に効率的な(LE)集合は、しばしば局所探索のトラップと見なされるが、決定空間において孤立されることは滅多にない。
Multi-Objective Gradient Sliding Algorithm (MOGSA)は、これらの重ね合わせを利用するアルゴリズムの概念である。
我々は,MMMOO問題におけるLE集合を効率的にモデル化し,活用できる新しいアルゴリズムであるMulti-Objective Landscape Explorer (MOLE)を提案する。
論文 参考訳(メタデータ) (2022-04-22T17:54:54Z) - An Instance Space Analysis of Constrained Multi-Objective Optimization
Problems [1.314903445595385]
我々は,制約付き多目的進化アルゴリズム(CMOEA)の性能とCMOPインスタンス特性の関係について,ISA(インスタンス空間解析)を用いて検討する。
6つのCMOPベンチマークスイートと15のCMOEAにまたがる問題アルゴリズムのフットプリントを詳細に評価する。
我々は、非支配的集合の分離と制約と目的の進化可能性の相関という2つの重要な特徴が、アルゴリズムの性能に最も大きな影響を与えると結論付けた。
論文 参考訳(メタデータ) (2022-03-02T04:28:11Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
目的の選好から最適な政策を学習する単一政策 MORL の問題について検討する。
既存の方法は、多目的決定プロセスの正確な知識のような強い仮定を必要とする。
モデルベースエンベロップ値 (EVI) と呼ばれる新しいアルゴリズムを提案し, 包含された多目的$Q$学習アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2020-11-19T22:35:31Z) - Multiobjectivization of Local Search: Single-Objective Optimization
Benefits From Multi-Objective Gradient Descent [0.0]
局所トラップから逃れることのできる勾配降下の概念を新たに提案する。
我々は、多目的問題に対して洗練された可視化技術を用いて、アイデアの動作原理を証明する。
論文 参考訳(メタデータ) (2020-10-02T13:56:44Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
モデル・ア・メタラーニング(MAML)は、メタラーニングを二段階最適化問題として定式化し、内部レベルが各サブタスクを、共有された事前に基づいて解決する。
学習と教師あり学習の両方においてMAMLが達成した定常点の最適性を特徴付ける。
論文 参考訳(メタデータ) (2020-06-23T17:33:14Z) - MODRL/D-AM: Multiobjective Deep Reinforcement Learning Algorithm Using
Decomposition and Attention Model for Multiobjective Optimization [15.235261981563523]
本稿では,多目的最適化問題を解くための多目的深部強化学習法を提案する。
本手法では,各サブプロブレムをアテンションモデルにより解き,入力ノードの構造的特徴とノード的特徴を活用できる。
論文 参考訳(メタデータ) (2020-02-13T12:59:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。