論文の概要: ParetoLens: A Visual Analytics Framework for Exploring Solution Sets of Multi-objective Evolutionary Algorithms
- arxiv url: http://arxiv.org/abs/2501.02857v1
- Date: Mon, 06 Jan 2025 09:04:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:35.797645
- Title: ParetoLens: A Visual Analytics Framework for Exploring Solution Sets of Multi-objective Evolutionary Algorithms
- Title(参考訳): ParetoLens: 多目的進化的アルゴリズムのソリューションセットを探索するビジュアル分析フレームワーク
- Authors: Yuxin Ma, Zherui Zhang, Ran Cheng, Yaochu Jin, Kay Chen Tan,
- Abstract要約: 本稿では,進化的アルゴリズムから導出した解集合の検査と探索を強化するための視覚分析フレームワークを提案する。
ParetoLensは、インタラクティブな視覚表現のスイートを通じて、決定空間と目的空間の両方における解分布の詳細な検査を可能にする。
- 参考スコア(独自算出の注目度): 42.23658218722045
- License:
- Abstract: In the domain of multi-objective optimization, evolutionary algorithms are distinguished by their capability to generate a diverse population of solutions that navigate the trade-offs inherent among competing objectives. This has catalyzed the ascension of evolutionary multi-objective optimization (EMO) as a prevalent approach. Despite the effectiveness of the EMO paradigm, the analysis of resultant solution sets presents considerable challenges. This is primarily attributed to the high-dimensional nature of the data and the constraints imposed by static visualization methods, which frequently culminate in visual clutter and impede interactive exploratory analysis. To address these challenges, this paper introduces ParetoLens, a visual analytics framework specifically tailored to enhance the inspection and exploration of solution sets derived from the multi-objective evolutionary algorithms. Utilizing a modularized, algorithm-agnostic design, ParetoLens enables a detailed inspection of solution distributions in both decision and objective spaces through a suite of interactive visual representations. This approach not only mitigates the issues associated with static visualizations but also supports a more nuanced and flexible analysis process. The usability of the framework is evaluated through case studies and expert interviews, demonstrating its potential to uncover complex patterns and facilitate a deeper understanding of multi-objective optimization solution sets. A demo website of ParetoLens is available at https://dva-lab.org/paretolens/.
- Abstract(参考訳): 多目的最適化の分野では、進化的アルゴリズムは、競合する目的に固有のトレードオフをナビゲートする多様な数のソリューションを生成する能力によって区別される。
これは、進化的多目的最適化(EMO)の上昇を、一般的なアプローチとして触媒している。
EMOパラダイムの有効性にもかかわらず、結果として得られる解集合の解析にはかなりの課題がある。
これは主に、データの高次元的性質と静的な可視化手法によって課される制約が、視覚的クラッタやインタラクティブな探索分析を妨げているためである。
これらの課題に対処するために,多目的進化アルゴリズムから導かれる解集合の検査と探索を強化するための視覚分析フレームワークParetoLensを紹介する。
ParetoLensは、モジュール化されたアルゴリズムに依存しない設計を用いて、インタラクティブな視覚表現のスイートを通じて、決定空間と目的空間の両方における解分布の詳細な検査を可能にする。
このアプローチは静的視覚化に関連する問題を緩和するだけでなく、より微妙で柔軟な分析プロセスもサポートする。
フレームワークのユーザビリティは、ケーススタディと専門家のインタビューを通じて評価され、複雑なパターンを明らかにする可能性を示し、多目的最適化ソリューションセットのより深い理解を促進する。
ParetoLensのデモサイトはhttps://dva-lab.org/paretolens/.comで公開されている。
関連論文リスト
- ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics [16.65441551504126]
本稿では,人口動態の理解と検査を支援するための視覚分析フレームワークを提案する。
このフレームワークは、パフォーマンスメトリクスの全体的なトレンドの調査から、進化的操作のきめ細かい検査に至るまで、ユーザエンゲージメントと探索に役立っている。
このフレームワークの有効性は、広く採用されているベンチマーク最適化問題に焦点をあてたケーススタディと専門家インタビューを通じて実証される。
論文 参考訳(メタデータ) (2024-08-08T15:46:11Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - A Comparative Visual Analytics Framework for Evaluating Evolutionary
Processes in Multi-objective Optimization [7.906582204901926]
EMOアルゴリズムにおける進化過程の探索と比較を可能にする視覚分析フレームワークを提案する。
ベンチマークおよび実世界の多目的最適化問題におけるケーススタディを通じて,本フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-08-10T15:32:46Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - Joint Entropy Search for Multi-objective Bayesian Optimization [0.0]
本稿では,統合エントロピー探索(Joint Entropy Search)と呼ばれるBOのための情報理論獲得関数を提案する。
本稿では, ハイパーボリュームとその重み付き変種の観点から, 合成および実世界の諸問題に対するこの新しいアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-10-06T13:19:08Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
本稿では,不完全な多視点観測のための深い変動情報ボトルネック (IB) 手法を提案する。
本手法は,対象物に関連のある視点内および視点間相互作用に焦点をあてるために,観測された視点の辺縁および結合表現にISBフレームワークを適用した。
実世界のデータセットの実験から、我々の手法はデータ統合から常に利益を得て、最先端のベンチマークより優れています。
論文 参考訳(メタデータ) (2021-02-05T06:05:39Z) - Empirical Study on the Benefits of Multiobjectivization for Solving
Single-Objective Problems [0.0]
局所オプティマはしばしばアルゴリズムの進行を防ぎ、深刻な脅威を引き起こす。
マルチオブジェクトの勾配に基づく高度な可視化技術を用いて,出現するマルチオブジェクトの景観の特性を図示し,考察した。
我々は,多目的COCOMOGSAがこれらの特性を利用して局所トラップを克服できることを実証的に示す。
論文 参考訳(メタデータ) (2020-06-25T14:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。