論文の概要: Statistical inference of assortative community structures
- arxiv url: http://arxiv.org/abs/2006.14493v3
- Date: Mon, 29 Jun 2020 07:07:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 04:33:48.544915
- Title: Statistical inference of assortative community structures
- Title(参考訳): 分類群落構造の統計的推論
- Authors: Lizhi Zhang and Tiago P. Peixoto
- Abstract要約: 本研究では,非パラメトリックなベイズ型分割モデルの定式化に基づいて,ネットワーク内のコンソーシアティブなコミュニティを推定する手法を開発した。
我々は,提案手法が解決限界に達していないことを示し,任意に多数のコミュニティを発見できることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We develop a principled methodology to infer assortative communities in
networks based on a nonparametric Bayesian formulation of the planted partition
model. We show that this approach succeeds in finding statistically significant
assortative modules in networks, unlike alternatives such as modularity
maximization, which systematically overfits both in artificial as well as in
empirical examples. In addition, we show that our method is not subject to a
resolution limit, and can uncover an arbitrarily large number of communities,
as long as there is statistical evidence for them. Our formulation is amenable
to model selection procedures, which allow us to compare it to more general
approaches based on the stochastic block model, and in this way reveal whether
assortativity is in fact the dominating large-scale mixing pattern. We perform
this comparison with several empirical networks, and identify numerous cases
where the network's assortativity is exaggerated by traditional community
detection methods, and we show how a more faithful degree of assortativity can
be identified.
- Abstract(参考訳): 本研究では,非パラメトリックベイズ的分割モデルの定式化に基づいて,ネットワーク内の代替的コミュニティを推定する手法を開発した。
モジュール性最大化(Modularity maximization)のような、人工的および実証的な例において体系的に過度に適合する代替手法とは異なり、このアプローチはネットワーク内で統計的に重要な代替モジュールを見つけることに成功していることを示す。
また,本手法は解決限界を満たさないことを示し,統計的な証拠がある限り,任意に多数のコミュニティを明らかにすることができることを示した。
我々の定式化は、確率的ブロックモデルに基づくより一般的なアプローチと比較可能なモデル選択手順に適しており、この方法では、アスカサティビティが実際に大規模な混合パターンを支配しているかどうかを明らかにする。
本研究は,いくつかの実験ネットワークとの比較を行い,従来のコミュニティ検出手法によってネットワークのソート性が誇張された多数の事例を特定し,より忠実なソート性が特定できることを示す。
関連論文リスト
- Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking [21.23500484100963]
最適輸送の枠組みの下で, ほぼ優位性をスムーズなコストで評価する統計モデルを導入する。
また、Sinkhornアルゴリズムを用いた仮説テストフレームワークと効率的な実装を提案する。
複数のメトリクスで評価された大規模言語モデルの比較とベンチマークを行う方法について紹介する。
論文 参考訳(メタデータ) (2024-06-10T16:14:50Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
現在のディープラーニングアプローチは、正確なサンプル確率を生み出す生成モデルに依存している。
この研究は、この制限を解除し、高度に表現力のある潜在変数モデルを採用する可能性を開放する手法を導入する。
我々は,データフリーなコンビネーション最適化におけるアプローチを実験的に検証し,幅広いベンチマーク問題に対して新しい最先端の手法を実現することを実証した。
論文 参考訳(メタデータ) (2024-06-03T17:55:02Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Bayesian community detection for networks with covariates [16.230648949593153]
科学界でもっとも注目されているのは「コミュニティ検出」である。
共依存型ランダムパーティションを持つブロックモデルを提案する。
本モデルでは, 後部推測により, コミュニティの数を知ることができる。
論文 参考訳(メタデータ) (2022-03-04T01:58:35Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Network Estimation by Mixing: Adaptivity and More [2.3478438171452014]
我々は、利用可能な任意のモデルを利用して、個々のパフォーマンスを改善する混合戦略を提案する。
提案手法は計算効率が高く,チューニングがほとんどない。
提案手法は,真のモデルが個々の候補に含まれる場合のオラクル推定と同等に動作することを示す。
論文 参考訳(メタデータ) (2021-06-05T05:17:04Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Learning more expressive joint distributions in multimodal variational
methods [0.17188280334580194]
正規化フローを用いたマルチモーダル変分法の表現能力を向上させる手法を提案する。
このモデルは,様々なコンピュータビジョンタスクの変動推論に基づいて,最先端のマルチモーダル手法を改善することを実証する。
また, より強力な近似関節分布の学習により, 生成した試料の品質が向上することを示した。
論文 参考訳(メタデータ) (2020-09-08T11:45:27Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
本稿では,生成モデルのみを用いた乱れの定量化手法を提案する。
複数のデータセットにまたがるいくつかの最先端モデルを実証的に評価する。
論文 参考訳(メタデータ) (2020-06-05T20:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。