PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis
- URL: http://arxiv.org/abs/2301.00772v1
- Date: Mon, 2 Jan 2023 17:47:27 GMT
- Title: PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis
- Authors: Hong-Yu Zhou, Chixiang Lu, Chaoqi Chen, Sibei Yang, Yizhou Yu
- Abstract summary: We propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics.
We also address the preservation of scale information, a powerful tool in aiding image understanding.
The proposed unified SSL framework surpasses its self-supervised counterparts on various tasks.
- Score: 56.63327669853693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in self-supervised learning (SSL) in computer vision are
primarily comparative, whose goal is to preserve invariant and discriminative
semantics in latent representations by comparing siamese image views. However,
the preserved high-level semantics do not contain enough local information,
which is vital in medical image analysis (e.g., image-based diagnosis and tumor
segmentation). To mitigate the locality problem of comparative SSL, we propose
to incorporate the task of pixel restoration for explicitly encoding more
pixel-level information into high-level semantics. We also address the
preservation of scale information, a powerful tool in aiding image
understanding but has not drawn much attention in SSL. The resulting framework
can be formulated as a multi-task optimization problem on the feature pyramid.
Specifically, we conduct multi-scale pixel restoration and siamese feature
comparison in the pyramid. In addition, we propose non-skip U-Net to build the
feature pyramid and develop sub-crop to replace multi-crop in 3D medical
imaging. The proposed unified SSL framework (PCRLv2) surpasses its
self-supervised counterparts on various tasks, including brain tumor
segmentation (BraTS 2018), chest pathology identification (ChestX-ray,
CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation
(LiTS), sometimes outperforming them by large margins with limited annotations.
Related papers
- Enhanced Self-supervised Learning for Multi-modality MRI Segmentation and Classification: A Novel Approach Avoiding Model Collapse [6.3467517115551875]
Multi-modality magnetic resonance imaging (MRI) can provide complementary information for computer-aided diagnosis.
Traditional deep learning algorithms are suitable for identifying specific anatomical structures segmenting lesions and classifying diseases with magnetic resonance images.
Self-supervised learning (SSL) can effectively learn feature representations from unlabeled data by pre-training and is demonstrated to be effective in natural image analysis.
Most SSL methods ignore the similarity of multi-modality MRI, leading to model collapse.
We establish and validate a multi-modality MRI masked autoencoder consisting of hybrid mask pattern (HMP) and pyramid barlow twin (PBT
arXiv Detail & Related papers (2024-07-15T01:11:30Z) - OPTiML: Dense Semantic Invariance Using Optimal Transport for Self-Supervised Medical Image Representation [6.4136876268620115]
Self-supervised learning (SSL) has emerged as a promising technique for medical image analysis due to its ability to learn without annotations.
We introduce a novel SSL framework OPTiML, employing optimal transport (OT), to capture the dense semantic invariance and fine-grained details.
Our empirical results reveal OPTiML's superiority over state-of-the-art methods across all evaluated tasks.
arXiv Detail & Related papers (2024-04-18T02:59:48Z) - SM2C: Boost the Semi-supervised Segmentation for Medical Image by using Meta Pseudo Labels and Mixed Images [13.971120210536995]
We introduce Scaling-up Mix with Multi-Class (SM2C) to improve the ability to learn semantic features within medical images.
By diversifying the shape of the segmentation objects and enriching the semantic information within each sample, the SM2C demonstrates its potential.
The proposed framework shows significant improvements over state-of-the-art counterparts.
arXiv Detail & Related papers (2024-03-24T04:39:40Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
We propose a multi-view vertebra localization and identification from CT images.
We convert the 3D problem into a 2D localization and identification task on different views.
Our method can learn the multi-view global information naturally.
arXiv Detail & Related papers (2023-07-24T14:43:07Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Cross-level Contrastive Learning and Consistency Constraint for
Semi-supervised Medical Image Segmentation [46.678279106837294]
We propose a cross-level constrastive learning scheme to enhance representation capacity for local features in semi-supervised medical image segmentation.
With the help of the cross-level contrastive learning and consistency constraint, the unlabelled data can be effectively explored to improve segmentation performance.
arXiv Detail & Related papers (2022-02-08T15:12:11Z) - SAR: Scale-Aware Restoration Learning for 3D Tumor Segmentation [23.384259038420005]
We propose Scale-Aware Restoration (SAR) for 3D tumor segmentation.
A novel proxy task, i.e. scale discrimination, is formulated to pre-train the 3D neural network combined with the self-restoration task.
We demonstrate the effectiveness of our methods on two downstream tasks: i.e. Brain tumor segmentation, ii. Pancreas tumor segmentation.
arXiv Detail & Related papers (2020-10-13T01:23:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.