論文の概要: PAC-Bayesian Bound for the Conditional Value at Risk
- arxiv url: http://arxiv.org/abs/2006.14763v1
- Date: Fri, 26 Jun 2020 02:55:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 20:55:27.384449
- Title: PAC-Bayesian Bound for the Conditional Value at Risk
- Title(参考訳): リスク条件値に対するPAC-Bayesian境界
- Authors: Zakaria Mhammedi, Benjamin Guedj, Robert C. Williamson
- Abstract要約: Conditional Value at Risk (CVaR) は、伝統的な数学的な予測を一般化する「コヒーレントなリスク尺度」のファミリーである。
本稿では,経験的損失のCVaRを最小化する学習アルゴリズムの一般化を提案する。
- 参考スコア(独自算出の注目度): 20.94565887795792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional Value at Risk (CVaR) is a family of "coherent risk measures"
which generalize the traditional mathematical expectation. Widely used in
mathematical finance, it is garnering increasing interest in machine learning,
e.g., as an alternate approach to regularization, and as a means for ensuring
fairness. This paper presents a generalization bound for learning algorithms
that minimize the CVaR of the empirical loss. The bound is of PAC-Bayesian type
and is guaranteed to be small when the empirical CVaR is small. We achieve this
by reducing the problem of estimating CVaR to that of merely estimating an
expectation. This then enables us, as a by-product, to obtain concentration
inequalities for CVaR even when the random variable in question is unbounded.
- Abstract(参考訳): Conditional Value at Risk (CVaR) は、伝統的な数学的な予測を一般化する「コヒーレントなリスク尺度」のファミリーである。
数学ファイナンスで広く使われるようになり、例えば正規化への代替アプローチや公正性の確保手段として機械学習への関心が高まっている。
本稿では,経験的損失のCVaRを最小化する学習アルゴリズムの一般化を提案する。
境界はPAC-Bayesian型であり、経験的CVaRが小さい場合には小さいことが保証される。
CVaRを単に予測値から推定する問題に還元することで、これを実現できる。
これにより,不規則変数が非有界である場合でも,副生成物としてCVaRの濃度不等式が得られる。
関連論文リスト
- Misclassification excess risk bounds for PAC-Bayesian classification via convexified loss [0.0]
PAC-Bayesian境界は、機械学習で新しい学習アルゴリズムを設計するための貴重なツールである。
本稿では、一般化の観点から、PAC-ベイズ境界に頼るのではなく、予想における相対的境界を利用する方法を示す。
論文 参考訳(メタデータ) (2024-08-16T11:41:06Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
さらに、テストポイントがトレーニングセットと非自明な相関を持ち、時系列予測で頻繁に発生するような場合まで分析を拡張します。
我々は多種多様な高次元データにまたがって理論を検証する。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - Provably Efficient CVaR RL in Low-rank MDPs [58.58570425202862]
リスクに敏感な強化学習(RL)について検討する。
本稿では, CVaR RLにおける探索, 搾取, 表現学習の相互作用のバランスをとるための, 新たなアッパー信頼境界(UCB)ボーナス駆動アルゴリズムを提案する。
提案アルゴリズムは,各エピソードの長さが$H$,アクション空間が$A$,表現の次元が$d$であるような,エプシロン$最適CVaRのサンプル複雑性を実現する。
論文 参考訳(メタデータ) (2023-11-20T17:44:40Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
CVaR(Conditional Value at Risk)として知られる量的ファイナンスにおける一般的なリスク尺度について考察する。
本稿では,トンプソンサンプリングに基づくCVaR-TSアルゴリズムの性能について検討する。
論文 参考訳(メタデータ) (2020-11-16T15:53:22Z) - Sharp Statistical Guarantees for Adversarially Robust Gaussian
Classification [54.22421582955454]
逆向きに頑健な分類の過剰リスクに対する最適ミニマックス保証の最初の結果を提供する。
結果はAdvSNR(Adversarial Signal-to-Noise Ratio)の項で述べられており、これは標準的な線形分類と逆数設定との類似の考え方を一般化している。
論文 参考訳(メタデータ) (2020-06-29T21:06:52Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z) - Learning with CVaR-based feedback under potentially heavy tails [8.572654816871873]
条件付きリスク(CVaR)の最小化を目指す学習アルゴリズムについて検討する。
まず,重み付き確率変数に対するCVaRの汎用推定器について検討する。
次に、勾配駆動サブプロセスによって生成される候補の中から頑健に選択する新しい学習アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-06-03T01:08:29Z) - Statistical Learning with Conditional Value at Risk [35.4968603057034]
本稿では,予測損失よりも損失の条件付き値付きリスク(CVaR)を用いて,学習アルゴリズムの性能を評価するリスク-逆統計学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-14T00:58:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。