論文の概要: PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
Bayesian Regime
- arxiv url: http://arxiv.org/abs/2010.09629v3
- Date: Mon, 23 May 2022 17:05:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 21:05:13.567249
- Title: PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
Bayesian Regime
- Title(参考訳): PAC$^m$-Bayes:不特定ベイズ法規における経験的リスクギャップを狭める
- Authors: Warren R. Morningstar, Alexander A. Alemi and Joshua V. Dillon
- Abstract要約: この研究は、2つのリスク間のトレードオフを分散することでギャップを埋めることのできるマルチサンプル損失を開発する。
実証的研究は予測分布の改善を示す。
- 参考スコア(独自算出の注目度): 75.19403612525811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Bayesian posterior minimizes the "inferential risk" which itself bounds
the "predictive risk". This bound is tight when the likelihood and prior are
well-specified. However since misspecification induces a gap, the Bayesian
posterior predictive distribution may have poor generalization performance.
This work develops a multi-sample loss (PAC$^m$) which can close the gap by
spanning a trade-off between the two risks. The loss is computationally
favorable and offers PAC generalization guarantees. Empirical study
demonstrates improvement to the predictive distribution.
- Abstract(参考訳): ベイジアン後方は「予測的リスク」を拘束する「予測的リスク」を最小化している。
この境界は、可能性と事前が十分に特定されたときに厳密である。
しかし、誤特定はギャップを引き起こすため、ベイズ後方予測分布は一般化性能に乏しい可能性がある。
この研究はマルチサンプル損失(PAC$^m$)を発展させ、この2つのリスク間のトレードオフにまたがることでギャップを埋めることができる。
この損失は計算上有利であり、PAC一般化を保証する。
実証的研究は予測分布の改善を示す。
関連論文リスト
- Data-driven decision-making under uncertainty with entropic risk measure [5.407319151576265]
エントロピーリスク尺度は、不確実な損失に関連する尾のリスクを考慮に入れた高い意思決定に広く用いられている。
経験的エントロピーリスク推定器を劣化させるため, 強く一貫したブートストラップ手法を提案する。
検証性能のバイアスが補正されない場合,クロスバリデーション手法は,保険業者のアウト・オブ・サンプルリスクを著しく高める可能性があることを示す。
論文 参考訳(メタデータ) (2024-09-30T04:02:52Z) - Misclassification excess risk bounds for PAC-Bayesian classification via convexified loss [0.0]
PAC-Bayesian境界は、機械学習で新しい学習アルゴリズムを設計するための貴重なツールである。
本稿では、一般化の観点から、PAC-ベイズ境界に頼るのではなく、予想における相対的境界を利用する方法を示す。
論文 参考訳(メタデータ) (2024-08-16T11:41:06Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Pitfall of Optimism: Distributional Reinforcement Learning by
Randomizing Risk Criterion [9.35556128467037]
本稿では,リスクの一方的な傾向を避けるために,リスク基準のランダム化によって行動を選択する新しい分散強化学習アルゴリズムを提案する。
理論的結果は,提案手法がバイアス探索に該当せず,最適回帰に収束することが保証されていることを裏付けるものである。
論文 参考訳(メタデータ) (2023-10-25T10:53:04Z) - Variational Prediction [95.00085314353436]
本稿では,変動境界を用いた後部予測分布に対する変動近似の学習手法を提案する。
このアプローチは、テスト時間の限界化コストを伴わずに、優れた予測分布を提供することができる。
論文 参考訳(メタデータ) (2023-07-14T18:19:31Z) - A Risk-Sensitive Approach to Policy Optimization [21.684251937825234]
標準深層強化学習(DRL)は、政策の定式化における収集経験を均等に考慮し、期待される報酬を最大化することを目的としている。
そこで本研究では,フルエピソード報酬の分布の累積分布関数 (CDF) で規定されるリスク感性目標を最適化する,より直接的なアプローチを提案する。
エージェントの動作が不十分なシナリオを強調する中程度の「悲観的」リスクプロファイルの使用が,探索の強化と,障害への継続的な対処に繋がることを示す。
論文 参考訳(メタデータ) (2022-08-19T00:55:05Z) - Probable Domain Generalization via Quantile Risk Minimization [90.15831047587302]
ドメインの一般化は、目に見えないテスト分布でうまく機能する予測子を求める。
我々はDGのための新しい確率的フレームワークを提案し、高い確率でよく動作する予測器を学習することを目指している。
論文 参考訳(メタデータ) (2022-07-20T14:41:09Z) - Holdouts set for predictive model updating [0.9749560288448114]
リスクスコアの更新は、バイアスのあるリスク見積につながる可能性がある。
リスクスコアによって導かれる介入を受けない集団のサブセットであるホールドアウトセット(holdout set)の使用を提案する。
このアプローチによって、N$の人口に対して、総コストが$Oleft(N2/3right)$で成長できることが証明され、一般的な状況では競合する代替手段はない、と論じる。
論文 参考訳(メタデータ) (2022-02-13T18:04:00Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。