Lasso Penalization for High-Dimensional Beta Regression Models: Computation, Analysis, and Inference
- URL: http://arxiv.org/abs/2507.20079v1
- Date: Sat, 26 Jul 2025 23:19:17 GMT
- Title: Lasso Penalization for High-Dimensional Beta Regression Models: Computation, Analysis, and Inference
- Authors: Niloofar Ramezani, Martin Slawski,
- Abstract summary: We develop a framework for non-asymptotic predictors with a negative log-likelihood function.<n>A gradient is devised for optimizing the resulting penalized negative log-likelihood function.<n>Our theoretical analysis is corroborated via simulation, and a real data example concerning the prediction of county-level incarceration is presented.
- Score: 3.330229314824914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Beta regression is commonly employed when the outcome variable is a proportion. Since its conception, the approach has been widely used in applications spanning various scientific fields. A series of extensions have been proposed over time, several of which address variable selection and penalized estimation, e.g., with an $\ell_1$-penalty (LASSO). However, a theoretical analysis of this popular approach in the context of Beta regression with high-dimensional predictors is lacking. In this paper, we aim to close this gap. A particular challenge arises from the non-convexity of the associated negative log-likelihood, which we address by resorting to a framework for analyzing stationary points in a neighborhood of the target parameter. Leveraging this framework, we derive a non-asymptotic bound on the $\ell_1$-error of such stationary points. In addition, we propose a debiasing approach to construct confidence intervals for the regression parameters. A proximal gradient algorithm is devised for optimizing the resulting penalized negative log-likelihood function. Our theoretical analysis is corroborated via simulation studies, and a real data example concerning the prediction of county-level proportions of incarceration is presented to showcase the practical utility of our methodology.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.<n>We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.<n>We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.<n>We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Quantifying predictive uncertainty of aphasia severity in stroke patients with sparse heteroscedastic Bayesian high-dimensional regression [47.1405366895538]
Sparse linear regression methods for high-dimensional data commonly assume that residuals have constant variance, which can be violated in practice.
This paper proposes estimating high-dimensional heteroscedastic linear regression models using a heteroscedastic partitioned empirical Bayes Expectation Conditional Maximization algorithm.
arXiv Detail & Related papers (2023-09-15T22:06:29Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet regression has emerged as a promising approach for regression analysis involving non-Euclidean response variables.
Our proposed framework combines the concepts of global Fr'echet regression and principal component regression, aiming to improve the efficiency and accuracy of the regression estimator.
arXiv Detail & Related papers (2023-05-16T08:37:54Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Scalable Gaussian-process regression and variable selection using
Vecchia approximations [3.4163060063961255]
Vecchia-based mini-batch subsampling provides unbiased gradient estimators.
We propose Vecchia-based mini-batch subsampling, which provides unbiased gradient estimators.
arXiv Detail & Related papers (2022-02-25T21:22:38Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Ridge Regression Revisited: Debiasing, Thresholding and Bootstrap [4.142720557665472]
ridge regression may be worth another look since -- after debiasing and thresholding -- it may offer some advantages over the Lasso.
In this paper, we define a debiased and thresholded ridge regression method, and prove a consistency result and a Gaussian approximation theorem.
In addition to estimation, we consider the problem of prediction, and present a novel, hybrid bootstrap algorithm tailored for prediction intervals.
arXiv Detail & Related papers (2020-09-17T05:04:10Z) - Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic
Bounds and Applications [0.6445605125467573]
gradient estimation is of crucial importance in statistics and learning theory.
We consider here the classic regression setup, where a real valued square integrable r.v. $Y$ is to be predicted.
We prove nonasymptotic bounds improving upon those obtained for alternative estimation methods.
arXiv Detail & Related papers (2020-06-26T15:19:43Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.