Learning predictive representations in autonomous driving to improve
deep reinforcement learning
- URL: http://arxiv.org/abs/2006.15110v1
- Date: Fri, 26 Jun 2020 17:17:47 GMT
- Title: Learning predictive representations in autonomous driving to improve
deep reinforcement learning
- Authors: Daniel Graves, Nhat M. Nguyen, Kimia Hassanzadeh, Jun Jin
- Abstract summary: Reinforcement learning using a novel predictive representation is applied to autonomous driving.
The novel predictive representation is learned by general value functions (GVFs) to provide out-of-policy, or counter-factual, predictions of future lane centeredness and road angle.
Experiments in both simulation and the real-world demonstrate that predictive representations in reinforcement learning improve learning efficiency, smoothness of control and generalization to roads that the agent was never shown during training.
- Score: 9.919972770800822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning using a novel predictive representation is applied to
autonomous driving to accomplish the task of driving between lane markings
where substantial benefits in performance and generalization are observed on
unseen test roads in both simulation and on a real Jackal robot. The novel
predictive representation is learned by general value functions (GVFs) to
provide out-of-policy, or counter-factual, predictions of future lane
centeredness and road angle that form a compact representation of the state of
the agent improving learning in both online and offline reinforcement learning
to learn to drive an autonomous vehicle with methods that generalizes well to
roads not in the training data. Experiments in both simulation and the
real-world demonstrate that predictive representations in reinforcement
learning improve learning efficiency, smoothness of control and generalization
to roads that the agent was never shown during training, including damaged lane
markings. It was found that learning a predictive representation that consists
of several predictions over different time scales, or discount factors,
improves the performance and smoothness of the control substantially. The
Jackal robot was trained in a two step process where the predictive
representation is learned first followed by a batch reinforcement learning
algorithm (BCQ) from data collected through both automated and human-guided
exploration in the environment. We conclude that out-of-policy predictive
representations with GVFs offer reinforcement learning many benefits in
real-world problems.
Related papers
- Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models [60.87795376541144]
A world model is a neural network capable of predicting an agent's next state given past states and actions.
During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations.
We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing.
arXiv Detail & Related papers (2024-09-25T06:48:25Z) - RAG-based Explainable Prediction of Road Users Behaviors for Automated Driving using Knowledge Graphs and Large Language Models [8.253092044813595]
We propose an explainable road users' behavior prediction system that integrates the reasoning abilities of Knowledge Graphs and Large Language Models.
Two use cases have been implemented following the proposed approach: 1) Prediction of pedestrians' crossing actions; 2) Prediction of lane change maneuvers.
arXiv Detail & Related papers (2024-05-01T11:06:31Z) - Adversary ML Resilience in Autonomous Driving Through Human Centered
Perception Mechanisms [0.0]
This paper explores the resilience of autonomous driving systems against three main physical adversarial attacks (tape, graffiti, illumination)
To build robustness against attacks, defense techniques like adversarial training and transfer learning were implemented.
Results demonstrated transfer learning models played a crucial role in performance by allowing knowledge gained from shape training to improve generalizability of road sign classification.
arXiv Detail & Related papers (2023-11-02T04:11:45Z) - Self-Aware Trajectory Prediction for Safe Autonomous Driving [9.868681330733764]
Trajectory prediction is one of the key components of the autonomous driving software stack.
In this paper, a self-aware trajectory prediction method is proposed.
The proposed method performed well in terms of self-awareness, memory footprint, and real-time performance.
arXiv Detail & Related papers (2023-05-16T03:53:23Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Generative Adversarial Imitation Learning for End-to-End Autonomous
Driving on Urban Environments [0.8122270502556374]
Generative Adversarial Imitation Learning (GAIL) can train policies without explicitly requiring to define a reward function.
We show that both of them are capable of imitating the expert trajectory from start to end after training ends.
arXiv Detail & Related papers (2021-10-16T15:04:13Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.