論文の概要: Making DensePose fast and light
- arxiv url: http://arxiv.org/abs/2006.15190v3
- Date: Thu, 9 Jul 2020 11:33:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 21:21:35.284037
- Title: Making DensePose fast and light
- Title(参考訳): DensePoseの高速化と軽量化
- Authors: Ruslan Rakhimov, Emil Bogomolov, Alexandr Notchenko, Fung Mao, Alexey
Artemov, Denis Zorin, Evgeny Burnaev
- Abstract要約: このタスクを解くことができる既存のニューラルネットワークモデルは、非常にパラメータ化されている。
現在のモデルで端末のDense Pose推論を有効にするには、高価なサーバーサイドのインフラをサポートし、安定したインターネット接続が必要である。
本研究では,DensePose R-CNNモデルのアーキテクチャを再設計することで,最終的なネットワークがその精度の大部分を維持しつつ,より軽量で高速なネットワークを実現することを目的とする。
- 参考スコア(独自算出の注目度): 78.49552144907513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DensePose estimation task is a significant step forward for enhancing user
experience computer vision applications ranging from augmented reality to cloth
fitting. Existing neural network models capable of solving this task are
heavily parameterized and a long way from being transferred to an embedded or
mobile device. To enable Dense Pose inference on the end device with current
models, one needs to support an expensive server-side infrastructure and have a
stable internet connection. To make things worse, mobile and embedded devices
do not always have a powerful GPU inside. In this work, we target the problem
of redesigning the DensePose R-CNN model's architecture so that the final
network retains most of its accuracy but becomes more light-weight and fast. To
achieve that, we tested and incorporated many deep learning innovations from
recent years, specifically performing an ablation study on 23 efficient
backbone architectures, multiple two-stage detection pipeline modifications,
and custom model quantization methods. As a result, we achieved $17\times$
model size reduction and $2\times$ latency improvement compared to the baseline
model.
- Abstract(参考訳): 高密度推定タスクは、拡張現実から布地への適合まで、ユーザエクスペリエンスのコンピュータビジョンアプリケーションを強化するための重要なステップである。
この課題を解決できる既存のニューラルネットワークモデルは、非常にパラメータ化されており、組み込みまたはモバイルデバイスへの転送には程遠い。
現在のモデルで端末のDense Pose推論を有効にするには、高価なサーバーサイドインフラストラクチャをサポートし、安定したインターネット接続が必要である。
さらに悪いことに、モバイルと組み込みデバイスは、必ずしも内部に強力なGPUを持っているとは限らない。
本研究では,r-cnnモデルのアーキテクチャを再設計し,最終的なネットワークの精度を保ちながら軽量化・高速化を図ることを目的とした。
そこで我々は近年,23の効率的なバックボーンアーキテクチャ,複数の2段階検出パイプライン修正,カスタムモデル量子化手法に関するアブレーション研究を行ってきた。
その結果,ベースラインモデルと比較して,モデルサイズ削減に17ドル,レイテンシ改善に2ドルを達成しました。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Dr$^2$Net: Dynamic Reversible Dual-Residual Networks for Memory-Efficient Finetuning [81.0108753452546]
本稿では,メモリ消費を大幅に削減した事前学習モデルを微調整するために,動的可逆2次元ネットワーク(Dr$2$Net)を提案する。
Dr$2$Netは2種類の残差接続を含み、1つは事前訓練されたモデルの残差構造を維持し、もう1つはネットワークを可逆的にしている。
Dr$2$Netは従来の微調整に匹敵する性能を持つが、メモリ使用量は大幅に少ない。
論文 参考訳(メタデータ) (2024-01-08T18:59:31Z) - Accelerating Deep Neural Networks via Semi-Structured Activation
Sparsity [0.0]
ネットワークの機能マップにスパシティを爆発させることは、推論のレイテンシを低減する方法の1つです。
そこで本研究では,セミ構造化されたアクティベーション空間を小さなランタイム修正によって活用する手法を提案する。
当社のアプローチでは,ImageNetデータセット上のResNet18モデルに対して,最小精度が1.1%の1.25倍の速度向上を実現している。
論文 参考訳(メタデータ) (2023-09-12T22:28:53Z) - Synaptic metaplasticity with multi-level memristive devices [1.5598974049838272]
推論とトレーニングの両方において,メタ塑性を実現するためのメムリスタベースのハードウェアソリューションを提案する。
MNISTとFashion-MNISTの連続トレーニングにおいて,2層パーセプトロンの精度は97%,86%であった。
我々のアーキテクチャは、mmristorの制限された耐久性と互換性があり、メモリは15倍削減されている。
論文 参考訳(メタデータ) (2023-06-21T09:40:25Z) - Efficient Deep Learning Methods for Identification of Defective Casting
Products [0.0]
本稿では,事前学習型およびカスタムビルド型AIアーキテクチャを比較し,比較した。
その結果、カスタムアーキテクチャは、事前訓練済みのモバイルアーキテクチャよりも効率的であることがわかった。
モデルをより堅牢で一般化可能にするため、カスタムアーキテクチャ上で拡張実験も実施されている。
論文 参考訳(メタデータ) (2022-05-14T19:35:05Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - The Untapped Potential of Off-the-Shelf Convolutional Neural Networks [29.205446247063673]
ResNet-50のような既存の市販モデルは、ImageNet上で95%以上の精度を持つことを示す。
このレベルのパフォーマンスは現在、20倍以上のパラメータとはるかに複雑なトレーニング手順を持つモデルを上回る。
論文 参考訳(メタデータ) (2021-03-17T20:04:46Z) - Toward Accurate Platform-Aware Performance Modeling for Deep Neural
Networks [0.17499351967216337]
機械学習に基づくPerfNetV2は、さまざまなGPUアクセラレータ上でのニューラルネットワークのパフォーマンスをモデル化するための、これまでの作業の精度を向上させる。
アプリケーションを利用すると、アプリケーションで使用される畳み込みニューラルネットワークの推論時間とトレーニング時間を予測することができる。
我々のケーススタディでは、PerfNetV2が13.1%のLeNet、AlexNet、VGG16、NVIDIA GTX-1080Tiで平均絶対パーセンテージエラーを発生し、ICBD 2018で発表された以前の研究のエラー率は200%に達する可能性がある。
論文 参考訳(メタデータ) (2020-12-01T01:42:23Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
パターンと接続性を組み合わせた新しい空間空間,すなわちパターンベースの空間空間を導入し,高度に正確かつハードウェアに親しみやすいものにした。
新たなパターンベースの空間性に対する我々のアプローチは,モバイルプラットフォーム上での高効率DNN実行のためのコンパイラ最適化に自然に適合する。
論文 参考訳(メタデータ) (2020-01-20T16:17:36Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。