論文の概要: Compressive MR Fingerprinting reconstruction with Neural Proximal
Gradient iterations
- arxiv url: http://arxiv.org/abs/2006.15271v3
- Date: Mon, 6 Jul 2020 11:51:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 08:08:32.254700
- Title: Compressive MR Fingerprinting reconstruction with Neural Proximal
Gradient iterations
- Title(参考訳): 神経近位勾配反復による圧縮型MRフィンガープリンティング再建
- Authors: Dongdong Chen, Mike E. Davies and Mohammad Golbabaee
- Abstract要約: ProxNetは学習した近位勾配降下フレームワークで、前方取得とBloch動的モデルを反復学習機構に組み込む。
我々の数値実験により、ProxNetはより優れた定量的推測精度、はるかに少ないストレージ要求、そして最近のディープラーニングMRFベースラインに匹敵するランタイムを実現することができることが示された。
- 参考スコア(独自算出の注目度): 27.259916894535404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consistency of the predictions with respect to the physical forward model is
pivotal for reliably solving inverse problems. This consistency is mostly
un-controlled in the current end-to-end deep learning methodologies proposed
for the Magnetic Resonance Fingerprinting (MRF) problem. To address this, we
propose ProxNet, a learned proximal gradient descent framework that directly
incorporates the forward acquisition and Bloch dynamic models within a
recurrent learning mechanism. The ProxNet adopts a compact neural proximal
model for de-aliasing and quantitative inference, that can be flexibly trained
on scarce MRF training datasets. Our numerical experiments show that the
ProxNet can achieve a superior quantitative inference accuracy, much smaller
storage requirement, and a comparable runtime to the recent deep learning MRF
baselines, while being much faster than the dictionary matching schemes. Code
has been released at https://github.com/edongdongchen/PGD-Net.
- Abstract(参考訳): 物理フォワードモデルに対する予測の一貫性は、逆問題を確実に解く上で重要である。
この一貫性は、磁気共鳴フィンガープリンティング(mrf)問題のために提案された現在のエンドツーエンドディープラーニング手法では、ほとんど制御されない。
そこで本研究では,前処理とブロッホの動的モデルを逐次学習機構に直接組み込んだ学習近位勾配降下フレームワークであるProxNetを提案する。
ProxNetはデエイリアスと定量的推論のためのコンパクトな神経近位モデルを採用しており、少ないMDFトレーニングデータセットで柔軟にトレーニングすることができる。
我々の数値実験により、ProxNetは、辞書マッチング方式よりもはるかに高速でありながら、より優れた量的推測精度、はるかに少ないストレージ要求、および最近のディープラーニングMRFベースラインと同等のランタイムを達成できることが示されている。
コードはhttps://github.com/edongdongchen/PGD-Netでリリースされた。
関連論文リスト
- Gradient-free variational learning with conditional mixture networks [39.827869318925494]
条件付き混合ネットワーク(CMN)は、高速で勾配のない推論に適しており、複雑な分類タスクを解くことができる。
UCIレポジトリから標準ベンチマークで2層CMNをトレーニングすることで、このアプローチを検証する。
提案手法であるCAVI-CMNは,バックプロパゲーションを伴う最大推定値(MLE)と比較して,競合的かつしばしば優れた予測精度を実現する。
論文 参考訳(メタデータ) (2024-08-29T10:43:55Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
学習目標に依存しない特定のマスクウェイトを選択する場合、このカーネルはトレーニングデータ上のゲートReLUネットワークのNTKと等価であることを示す。
この目標への依存の欠如の結果として、NTKはトレーニングセット上の最適MKLカーネルよりもパフォーマンスが良くない。
論文 参考訳(メタデータ) (2023-09-26T17:42:52Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - On the optimization and pruning for Bayesian deep learning [1.0152838128195467]
重み空間上でニューラルネットワークを学習するための適応型変分ベイズアルゴリズムを提案する。
EM-MCMCアルゴリズムにより,ワンショットで最適化とモデルプルーニングを行うことができる。
我々の密度モデルは最先端の性能に到達でき、スパースモデルは以前提案したプルーニング方式と比較して非常によく機能する。
論文 参考訳(メタデータ) (2022-10-24T05:18:08Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - A Distributed Optimisation Framework Combining Natural Gradient with
Hessian-Free for Discriminative Sequence Training [16.83036203524611]
本稿では、ニューラルネットワークトレーニングのための自然勾配およびヘッセンフリー(NGHF)最適化フレームワークを提案する。
これは、自然勾配(ng)法とヘッセンフリー(hf)や他の二次法からの局所曲率情報を組み合わせた線形共役勾配(cg)アルゴリズムに依存している。
さまざまな音響モデルタイプのマルチジャンル放送データセットで実験が報告されています。
論文 参考訳(メタデータ) (2021-03-12T22:18:34Z) - Sparsely constrained neural networks for model discovery of PDEs [0.0]
本稿では,任意のスパース回帰手法を用いて,ディープラーニングに基づくサロゲートのスパースパターンを決定するモジュラーフレームワークを提案する。
異なるネットワークアーキテクチャと疎度推定器がモデル発見精度と収束性を,いくつかのベンチマーク例でどのように改善するかを示す。
論文 参考訳(メタデータ) (2020-11-09T11:02:40Z) - A Novel Neural Network Training Framework with Data Assimilation [2.948167339160823]
勾配計算を避けるため,データ同化に基づく勾配なし学習フレームワークを提案する。
その結果,提案手法は勾配法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-06T11:12:23Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。