Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis
- URL: http://arxiv.org/abs/2006.15517v1
- Date: Sun, 28 Jun 2020 05:25:50 GMT
- Title: Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis
- Authors: Rui Zhao, Kin-Man Lam, Daniel P.K. Lun
- Abstract summary: We propose a discrete wavelet denoising CNN (WDnCNN) which restores images corrupted by various noise with a single model.
To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum.
We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers.
- Score: 23.11994688706024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural network (CNN)-based image denoising methods have been
widely studied recently, because of their high-speed processing capability and
good visual quality. However, most of the existing CNN-based denoisers learn
the image prior from the spatial domain, and suffer from the problem of
spatially variant noise, which limits their performance in real-world image
denoising tasks. In this paper, we propose a discrete wavelet denoising CNN
(WDnCNN), which restores images corrupted by various noise with a single model.
Since most of the content or energy of natural images resides in the
low-frequency spectrum, their transformed coefficients in the frequency domain
are highly imbalanced. To address this issue, we present a band normalization
module (BNM) to normalize the coefficients from different parts of the
frequency spectrum. Moreover, we employ a band discriminative training (BDT)
criterion to enhance the model regression. We evaluate the proposed WDnCNN, and
compare it with other state-of-the-art denoisers. Experimental results show
that WDnCNN achieves promising performance in both synthetic and real noise
reduction, making it a potential solution to many practical image denoising
applications.
Related papers
- Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
We introduce a self-modulating convolutional neural network which utilizes correlated spectral and spatial information.
At the core of the model lies a novel block, which allows the network to transform the features in an adaptive manner based on the adjacent spectral data.
Experimental analysis on both synthetic and real data shows that the proposed SM-CNN outperforms other state-of-the-art HSI denoising methods.
arXiv Detail & Related papers (2023-09-15T06:57:43Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information.
We propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and residual block (RB)
arXiv Detail & Related papers (2022-09-26T03:28:23Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
We propose a novel network architecture denoted as IGNet, in order to refine the frequency bands from low to high in a progressive manner.
With this design, more inter-frequency prior and information are utilized, thus the model size can be lightened while still perserves competitive results.
arXiv Detail & Related papers (2021-12-22T10:35:53Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
We propose a new learning-based non-blind denoising technique named Attention Residual Convolutional Neural Network (ARCNN) and its extension to blind denoising named Flexible Attention Residual Convolutional Neural Network (FARCNN)
ARCNN achieved an overall average PSNR results of around 0.44dB and 0.96dB for Gaussian and Poisson denoising, respectively FARCNN presented very consistent results, even with slightly worsen performance compared to ARCNN.
arXiv Detail & Related papers (2021-01-19T16:37:57Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Progressive Training of Multi-level Wavelet Residual Networks for Image
Denoising [80.10533234415237]
This paper presents a multi-level wavelet residual network (MWRN) architecture as well as a progressive training scheme to improve image denoising performance.
Experiments on both synthetic and real-world noisy images show that our PT-MWRN performs favorably against the state-of-the-art denoising methods.
arXiv Detail & Related papers (2020-10-23T14:14:00Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.