論文の概要: Self-Attention Networks for Intent Detection
- arxiv url: http://arxiv.org/abs/2006.15585v1
- Date: Sun, 28 Jun 2020 12:19:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 02:32:19.619301
- Title: Self-Attention Networks for Intent Detection
- Title(参考訳): インテント検出のための自己注意ネットワーク
- Authors: Sevinj Yolchuyeva, G\'eza N\'emeth, B\'alint Gyires-T\'oth
- Abstract要約: 本稿では,自己注意ネットワークとBi-LSTMに基づく新たな意図検出システムを提案する。
提案手法は,変圧器モデルと深層平均化ネットワークベースユニバーサル文エンコーダを用いて改善を示す。
我々は,Snips,Smart Speaker,Smart Lights,およびATISデータセットを異なる評価指標で評価する。
- 参考スコア(独自算出の注目度): 0.9023847175654603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-attention networks (SAN) have shown promising performance in various
Natural Language Processing (NLP) scenarios, especially in machine translation.
One of the main points of SANs is the strength of capturing long-range and
multi-scale dependencies from the data. In this paper, we present a novel
intent detection system which is based on a self-attention network and a
Bi-LSTM. Our approach shows improvement by using a transformer model and deep
averaging network-based universal sentence encoder compared to previous
solutions. We evaluate the system on Snips, Smart Speaker, Smart Lights, and
ATIS datasets by different evaluation metrics. The performance of the proposed
model is compared with LSTM with the same datasets.
- Abstract(参考訳): 自己注意ネットワーク(SAN)は、特に機械翻訳において、様々な自然言語処理(NLP)シナリオで有望な性能を示している。
SANの主なポイントの1つは、データから長距離およびマルチスケールの依存関係をキャプチャする強度である。
本稿では,自己注意ネットワークとBi-LSTMに基づく意図検出システムを提案する。
提案手法は,従来の手法と比較して,トランスモデルとネットワークベースの普遍文エンコーダの深層平均化による改善を示す。
我々は,Snips,Smart Speaker,Smart Lights,およびATISデータセットを異なる評価指標で評価する。
提案モデルの性能をLSTMと同一のデータセットと比較する。
関連論文リスト
- SER Evals: In-domain and Out-of-domain Benchmarking for Speech Emotion Recognition [3.4355593397388597]
音声感情認識(SER)は、強力な自己教師付き学習(SSL)モデルの出現に大きく貢献している。
本稿では,最先端SERモデルの堅牢性と適応性を評価するための大規模ベンチマークを提案する。
主に音声認識用に設計されたWhisperモデルは,言語横断SERにおいて,専用SSLモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-08-14T23:33:10Z) - Feature Aggregation in Joint Sound Classification and Localization
Neural Networks [0.0]
現在の最先端の音源ローカライゼーション深層学習ネットワークは、アーキテクチャ内での機能集約を欠いている。
我々は,コンピュータビジョンニューラルネットワークから信号検出ニューラルネットワークへ特徴集約技術を適用する。
論文 参考訳(メタデータ) (2023-10-29T16:37:14Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
自己注意モジュール(SAM)は、異なる層にまたがる強い相関した注意マップを生成する。
Dense-and-Implicit Attention (DIA)はSAMをレイヤ間で共有し、長期間のメモリモジュールを使用する。
我々のシンプルで効果的なDIAは、様々なネットワークバックボーンを一貫して拡張できます。
論文 参考訳(メタデータ) (2022-10-27T13:24:08Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Streaming Multi-Talker ASR with Token-Level Serialized Output Training [53.11450530896623]
t-SOTはマルチトーカー自動音声認識のための新しいフレームワークである。
t-SOTモデルには、推論コストの低減とよりシンプルなモデルアーキテクチャの利点がある。
重複しない音声の場合、t-SOTモデルは精度と計算コストの両面において単一ストーカーのASRモデルと同等である。
論文 参考訳(メタデータ) (2022-02-02T01:27:21Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
機械学習(ML)ベースのネットワーク侵入検知システムは、組織のセキュリティ姿勢を高める多くの利点をもたらす。
多くのシステムは研究コミュニティで設計・開発されており、特定のデータセットを用いて評価すると、しばしば完璧な検出率を達成する。
本稿では,異なるネットワーク環境と攻撃タイプに設定した共通機能の汎用性を評価することにより,ギャップを狭める。
論文 参考訳(メタデータ) (2021-04-15T00:44:45Z) - AMVNet: Assertion-based Multi-View Fusion Network for LiDAR Semantic
Segmentation [8.883837682023493]
We present a Assertion-based Multi-View Fusion network (AMVNet) for LiDAR semantic segmentation。
スコアの不一致のアサーションガイドポイントサンプリングを行い、各サンプリングポイントのポイントレベルの機能セットを単純なポイントヘッドに渡し、予測を洗練します。
提案手法は,プロジェクションベースネットワークのクラススコアを組み合わせたベースライン法よりも優れている。
論文 参考訳(メタデータ) (2020-12-09T09:34:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。