A shared neural encoding model for the prediction of subject-specific
fMRI response
- URL: http://arxiv.org/abs/2006.15802v2
- Date: Sat, 11 Jul 2020 03:10:46 GMT
- Title: A shared neural encoding model for the prediction of subject-specific
fMRI response
- Authors: Meenakshi Khosla, Gia H. Ngo, Keith Jamison, Amy Kuceyeski and Mert R.
Sabuncu
- Abstract summary: We propose a shared convolutional neural encoding method that accounts for individual-level differences.
Our method leverages multi-subject data to improve the prediction of subject-specific responses evoked by visual or auditory stimuli.
- Score: 17.020869686284165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing popularity of naturalistic paradigms in fMRI (such as movie
watching) demands novel strategies for multi-subject data analysis, such as use
of neural encoding models. In the present study, we propose a shared
convolutional neural encoding method that accounts for individual-level
differences. Our method leverages multi-subject data to improve the prediction
of subject-specific responses evoked by visual or auditory stimuli. We showcase
our approach on high-resolution 7T fMRI data from the Human Connectome Project
movie-watching protocol and demonstrate significant improvement over
single-subject encoding models. We further demonstrate the ability of the
shared encoding model to successfully capture meaningful individual differences
in response to traditional task-based facial and scenes stimuli. Taken
together, our findings suggest that inter-subject knowledge transfer can be
beneficial to subject-specific predictive models.
Related papers
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - CLIP-MUSED: CLIP-Guided Multi-Subject Visual Neural Information Semantic
Decoding [14.484475792279671]
We propose a CLIP-guided Multi-sUbject visual neural information SEmantic Decoding (CLIP-MUSED) method.
Our method consists of a Transformer-based feature extractor to effectively model global neural representations.
It also incorporates learnable subject-specific tokens that facilitates the aggregation of multi-subject data.
arXiv Detail & Related papers (2024-02-14T07:41:48Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation [5.662694302758443]
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research.
It frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients.
One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition.
arXiv Detail & Related papers (2023-09-06T19:01:58Z) - Personalized visual encoding model construction with small data [1.6799377888527687]
We propose and test an alternative personalized ensemble encoding model approach to utilize existing encoding models.
We show that these personalized ensemble encoding models trained with small amounts of data for a specific individual.
Importantly, the personalized ensemble encoding models preserve patterns of inter-individual variability in the image-response relationship.
arXiv Detail & Related papers (2022-02-04T17:24:50Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
Multi-modal functional magnetic resonance imaging (fMRI) can be used to make predictions about individual behavioral and cognitive traits based on brain connectivity networks.
We propose an interpretable multi-modal graph convolutional network (MGCN) model, incorporating the fMRI time series and the functional connectivity (FC) between each pair of brain regions.
We validate our MGCN model on the Philadelphia Neurodevelopmental Cohort to predict individual wide range achievement test (WRAT) score.
arXiv Detail & Related papers (2021-01-20T20:53:07Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
We propose a method that integrates key ingredients from latent models and traditional neural encoding models.
Our method, pi-VAE, is inspired by recent progress on identifiable variational auto-encoder.
We validate pi-VAE using synthetic data, and apply it to analyze neurophysiological datasets from rat hippocampus and macaque motor cortex.
arXiv Detail & Related papers (2020-11-09T22:00:38Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.