論文の概要: General approach for constructing Hamiltonians for nonadiabatic
holonomic quantum computation
- arxiv url: http://arxiv.org/abs/2006.16708v1
- Date: Tue, 30 Jun 2020 12:01:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 01:26:05.397368
- Title: General approach for constructing Hamiltonians for nonadiabatic
holonomic quantum computation
- Title(参考訳): 非断熱ホロノミック量子計算のためのハミルトニアンの一般的構成法
- Authors: P. Z. Zhao, K. Z. Li, G. F. Xu, D. M. Tong
- Abstract要約: 非断熱的なホロノミック量子計算は理論と実験の両方で多くの注目を集めている。
本稿では,非断熱的ホロノミック量子計算のためのハミルトニアンの構成法を提案する。
これにより、進化の時間を最小化し、非断熱的なホロノミック量子計算の現実的な実装のための新たな地平を開くことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The main challenges in achieving high-fidelity quantum gates are to reduce
the influence of control errors caused by imperfect Hamiltonians and the
influence of decoherence caused by environment noise. To overcome control
errors, a promising proposal is nonadiabatic holonomic quantum computation,
which has attracted much attention in both theories and experiments. While the
merit of holonomic operations resisting control errors has been well exploited,
an important issue following is how to shorten the evolution time needed for
realizing a holonomic gate so as to avoid the influence of environment noise as
much as possible. In this paper, we put forward a general approach of
constructing Hamiltonians for nonadiabatic holonomic quantum computation, which
makes it possible to minimize the evolution time and might open a new horizon
for the realistic implementation of nonadiabatic holonomic quantum computation.
- Abstract(参考訳): 高忠実度量子ゲートの達成における主な課題は、不完全ハミルトニアンによる制御誤差の影響と環境騒音によるデコヒーレンスの影響を減らすことである。
制御誤差を克服するために、有望な提案は非線形ホロノミック量子計算であり、理論と実験の両方に大きな注目を集めている。
制御誤差に抵抗するホロノミック操作のメリットは十分に活用されているが, 環境騒音の影響を可能な限り回避するため, ホロノミックゲートの実現に必要な進化時間を短縮する方法が重要な課題である。
本稿では,非断熱的ホロノミック量子計算のためのハミルトニアンを構築し,その進化時間を最小化し,非断熱ホロノミック量子計算の現実的な実装に向けた新たな地平を開く方法を提案する。
関連論文リスト
- The quantum adiabatic algorithm suppresses the proliferation of errors [0.29998889086656577]
本稿では,アダバティックアルゴリズムにおける単一エラー事象の拡散を解析する。
以上の結果から,1回のエラーイベントがあっても低エネルギー状態が達成できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-23T18:00:00Z) - Robustness of quantum algorithms against coherent control errors [0.5407319151576265]
本稿では,リプシッツ境界を用いたコヒーレント制御誤差に対する量子アルゴリズムのロバスト性を解析するためのフレームワークを提案する。
我々は、コヒーレントな制御誤差に対するレジリエンスが、個々のゲートを生成するハミルトニアンの規範に影響されていることを示す最悪のケースの忠実性境界を導出する。
論文 参考訳(メタデータ) (2023-03-01T16:18:38Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
モルマー・ソレンセンエンタングゲートの誤校正パラメータの系統的摂動展開について検討した。
我々はゲート進化演算子を計算し、関連する鍵特性を得る。
我々は、捕捉されたイオン量子プロセッサにおける測定値に対して、モデルからの予測をベンチマークすることで検証する。
論文 参考訳(メタデータ) (2021-12-10T10:56:16Z) - Robust Nonadiabatic Holonomic Quantum Gates on Decoherence-Protected
Qubits [4.18804572788063]
本稿では,幾何学的位相アプローチと動的補正手法を組み合わせた量子演算手法を提案する。
本手法は超伝導回路上に実装されており,従来の実装も簡略化されている。
論文 参考訳(メタデータ) (2021-10-06T14:39:52Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Noncyclic nonadiabatic holonomic quantum gates via shortcuts to
adiabaticity [5.666193021459319]
本稿では,短絡から断熱までを通した普遍量子システムのための高速でロバストなホロノミック量子ゲートの構築手法を提案する。
この方式は、現在量子計算の実装のために追求されている物理系において容易に実現可能である。
論文 参考訳(メタデータ) (2021-05-28T15:23:24Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
共振駆動を持つ4レベル系をベースとした171mathrmYb+$イオンを捕捉した2つの暗い経路に非断熱型ホロノミック単一量子ゲートを示す。
現在の実験技術では、非自明なホロノミック2量子ビット量子ゲートも実現可能である。
論文 参考訳(メタデータ) (2021-01-19T06:57:50Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Dynamically Corrected Nonadiabatic Holonomic Quantum Gates [2.436681150766912]
非線形ホロノミック量子計算(NHQC)の耐雑音性は改善される必要がある。
本稿では, 簡易制御による汎用NHQCの汎用プロトコルを提案し, 付随するXエラーの影響を大幅に抑制することができる。
数値シミュレーションにより, ゲートの性能は従来のプロトコルよりもはるかに良好であることが示された。
論文 参考訳(メタデータ) (2020-12-16T15:52:38Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates\\ with Optimal Control in a Trapped Ion [38.217839102257365]
我々は,Ybイオンを捕捉した非断熱型ホロノミック単一量子ゲートの最適制御を実験的に実証した。
従来の幾何学的ゲートや従来の動的ゲートと比較すると,制御振幅誤差に対してより頑健である。
論文 参考訳(メタデータ) (2020-06-08T14:06:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。