Predicting Sample Collision with Neural Networks
- URL: http://arxiv.org/abs/2006.16868v1
- Date: Tue, 30 Jun 2020 14:56:14 GMT
- Title: Predicting Sample Collision with Neural Networks
- Authors: Tuan Tran, Jory Denny, Chinwe Ekenna
- Abstract summary: We present a framework to address the cost of expensive primitive operations in sampling-based motion planning.
We evaluate our framework on multiple planning problems with a variety of robots in 2D and 3D workspaces.
- Score: 5.713670854553366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many state-of-art robotics applications require fast and efficient motion
planning algorithms. Existing motion planning methods become less effective as
the dimensionality of the robot and its workspace increases, especially the
computational cost of collision detection routines. In this work, we present a
framework to address the cost of expensive primitive operations in
sampling-based motion planning. This framework determines the validity of a
sample robot configuration through a novel combination of a Contractive
AutoEncoder (CAE), which captures a occupancy grids representation of the
robot's workspace, and a Multilayer Perceptron, which efficiently predicts the
collision state of the robot from the CAE and the robot's configuration. We
evaluate our framework on multiple planning problems with a variety of robots
in 2D and 3D workspaces. The results show that (1) the framework is
computationally efficient in all investigated problems, and (2) the framework
generalizes well to new workspaces.
Related papers
- $\textbf{EMOS}$: $\textbf{E}$mbodiment-aware Heterogeneous $\textbf{M}$ulti-robot $\textbf{O}$perating $\textbf{S}$ystem with LLM Agents [33.77674812074215]
We introduce a novel multi-agent framework designed to enable effective collaboration among heterogeneous robots.
We propose a self-prompted approach, where agents comprehend robot URDF files and call robot kinematics tools to generate descriptions of their physics capabilities.
The Habitat-MAS benchmark is designed to assess how a multi-agent framework handles tasks that require embodiment-aware reasoning.
arXiv Detail & Related papers (2024-10-30T03:20:01Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Robotic warehousing operations: a learn-then-optimize approach to large-scale neighborhood search [84.39855372157616]
This paper supports robotic parts-to-picker operations in warehousing by optimizing order-workstation assignments, item-pod assignments and the schedule of order fulfillment at workstations.
We solve it via large-scale neighborhood search, with a novel learn-then-optimize approach to subproblem generation.
In collaboration with Amazon Robotics, we show that our model and algorithm generate much stronger solutions for practical problems than state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-29T20:22:22Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Neural Implicit Swept Volume Models for Fast Collision Detection [0.0]
We present an algorithm combining the speed of the deep learning-based signed distance computations with the strong accuracy guarantees of geometric collision checkers.
We validate our approach in simulated and real-world robotic experiments, and demonstrate that it is able to speed up a commercial bin picking application.
arXiv Detail & Related papers (2024-02-23T12:06:48Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Contribution \`a l'Optimisation d'un Comportement Collectif pour un
Groupe de Robots Autonomes [0.0]
This thesis studies the domain of collective robotics, and more particularly the optimization problems of multirobot systems.
The first contribution is the use of the Butterfly Algorithm Optimization (BOA) to solve the Unknown Area Exploration problem.
The second contribution is the development of a new simulation framework for benchmarking dynamic incremental problems in robotics.
arXiv Detail & Related papers (2023-06-10T21:49:08Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - An advantage actor-critic algorithm for robotic motion planning in dense
and dynamic scenarios [0.8594140167290099]
In this paper, we modify existing advantage actor-critic algorithm and suit it to complex motion planning.
It achieves higher success rate in motion planning with lesser processing time for robot to reach its goal.
arXiv Detail & Related papers (2021-02-05T12:30:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.