Neural Implicit Swept Volume Models for Fast Collision Detection
- URL: http://arxiv.org/abs/2402.15281v3
- Date: Wed, 13 Mar 2024 08:34:47 GMT
- Title: Neural Implicit Swept Volume Models for Fast Collision Detection
- Authors: Dominik Joho, Jonas Schwinn, Kirill Safronov
- Abstract summary: We present an algorithm combining the speed of the deep learning-based signed distance computations with the strong accuracy guarantees of geometric collision checkers.
We validate our approach in simulated and real-world robotic experiments, and demonstrate that it is able to speed up a commercial bin picking application.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collision detection is one of the most time-consuming operations during
motion planning. Thus, there is an increasing interest in exploring machine
learning techniques to speed up collision detection and sampling-based motion
planning. A recent line of research focuses on utilizing neural signed distance
functions of either the robot geometry or the swept volume of the robot motion.
Building on this, we present a novel neural implicit swept volume model to
continuously represent arbitrary motions parameterized by their start and goal
configurations. This allows to quickly compute signed distances for any point
in the task space to the robot motion. Further, we present an algorithm
combining the speed of the deep learning-based signed distance computations
with the strong accuracy guarantees of geometric collision checkers. We
validate our approach in simulated and real-world robotic experiments, and
demonstrate that it is able to speed up a commercial bin picking application.
Related papers
- Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
Currently, humans drive robots to meet scientific objectives, but depending on the robot's location, the exchange of information and driving commands may cause undue delays in mission fulfillment.
An autonomous robot encoded with a scientific objective and an exploration strategy incurs no communication delays and can fulfill missions more quickly.
Active learning algorithms offer this capability of intelligent exploration, but the underlying model structure varies the performance of the active learning algorithm in accurately forming an understanding of the environment.
arXiv Detail & Related papers (2023-09-28T02:45:14Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Progressive Learning for Physics-informed Neural Motion Planning [1.9798034349981157]
Motion planning is one of the core robotics problems requiring fast methods for finding a collision-free robot motion path.
Recent advancements have led to a physics-informed NMP approach that directly solves the Eikonal equation for motion planning.
This paper presents a novel and tractable Eikonal equation formulation and introduces a new progressive learning strategy to train neural networks without expert data.
arXiv Detail & Related papers (2023-06-01T12:41:05Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - PUCK: Parallel Surface and Convolution-kernel Tracking for Event-Based
Cameras [4.110120522045467]
Event-cameras can guarantee fast visual sensing in dynamic environments, but require a tracking algorithm that can keep up with the high data rate induced by the robot ego-motion.
We introduce a novel tracking method that leverages the Exponential Reduced Ordinal Surface (EROS) data representation to decouple event-by-event processing and tracking.
We propose the task of tracking the air hockey puck sliding on a surface, with the future aim of controlling the iCub robot to reach the target precisely and on time.
arXiv Detail & Related papers (2022-05-16T13:23:52Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
We propose a camera-based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network.
The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames.
We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field.
arXiv Detail & Related papers (2020-06-07T08:18:31Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
We describe a novel architecture that enables multiple low-compute NAO robots to perform real-time detection, recognition and localization of objects in its camera view.
The proposed algorithm for object detection and localization is an empirical modification of YOLOv3, based on indoor experiments in multiple scenarios.
The architecture also comprises of an effective end-to-end pipeline to feed the real-time frames from the camera feed to the neural net and use its results for guiding the robot.
arXiv Detail & Related papers (2020-01-20T05:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.