Deep neural networks for the evaluation and design of photonic devices
- URL: http://arxiv.org/abs/2007.00084v1
- Date: Tue, 30 Jun 2020 19:52:54 GMT
- Title: Deep neural networks for the evaluation and design of photonic devices
- Authors: Jiaqi Jiang, Mingkun Chen, and Jonathan A. Fan
- Abstract summary: Review: How deep neural networks can learn from training sets and operate as high-speed surrogate electromagnetic solvers.
Fundamental data sciences framed within the context of photonics will also be discussed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The data sciences revolution is poised to transform the way photonic systems
are simulated and designed. Photonics are in many ways an ideal substrate for
machine learning: the objective of much of computational electromagnetics is
the capture of non-linear relationships in high dimensional spaces, which is
the core strength of neural networks. Additionally, the mainstream availability
of Maxwell solvers makes the training and evaluation of neural networks broadly
accessible and tailorable to specific problems. In this Review, we will show
how deep neural networks, configured as discriminative networks, can learn from
training sets and operate as high-speed surrogate electromagnetic solvers. We
will also examine how deep generative networks can learn geometric features in
device distributions and even be configured to serve as robust global
optimizers. Fundamental data sciences concepts framed within the context of
photonics will also be discussed, including the network training process,
delineation of different network classes and architectures, and dimensionality
reduction.
Related papers
- Artificial Neural Networks for Photonic Applications: From Algorithms to Implementation [1.7371307928431834]
This tutorial-review on applications of artificial neural networks in photonics targets a broad audience.
We focus here on the research areas at the interface between these disciplines, attempting to find the right balance between technical details specific to each domain and overall clarity.
arXiv Detail & Related papers (2024-08-02T08:22:49Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Riemannian Residual Neural Networks [58.925132597945634]
We show how to extend the residual neural network (ResNet)
ResNets have become ubiquitous in machine learning due to their beneficial learning properties, excellent empirical results, and easy-to-incorporate nature when building varied neural networks.
arXiv Detail & Related papers (2023-10-16T02:12:32Z) - Deep Learning Meets Sparse Regularization: A Signal Processing
Perspective [17.12783792226575]
We present a mathematical framework that characterizes the functional properties of neural networks that are trained to fit to data.
Key mathematical tools which support this framework include transform-domain sparse regularization, the Radon transform of computed tomography, and approximation theory.
This framework explains the effect of weight decay regularization in neural network training, the use of skip connections and low-rank weight matrices in network architectures, the role of sparsity in neural networks, and explains why neural networks can perform well in high-dimensional problems.
arXiv Detail & Related papers (2023-01-23T17:16:21Z) - Experimentally realized in situ backpropagation for deep learning in
nanophotonic neural networks [0.7627023515997987]
We design mass-manufacturable silicon photonic neural networks that cascade our custom designed "photonic mesh" accelerator.
We demonstrate in situ backpropagation for the first time to solve classification tasks.
Our findings suggest a new training paradigm for photonics-accelerated artificial intelligence based entirely on a physical analog of the popular backpropagation technique.
arXiv Detail & Related papers (2022-05-17T17:13:50Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
Modelling and forecasting multi-physical systems remain a challenge due to unavoidable data scarcity and noise.
New framework named physics-informed convolutional network (PICN) is recommended from a CNN perspective.
PICN may become an alternative neural network solver in physics-informed machine learning.
arXiv Detail & Related papers (2022-01-26T14:35:58Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - A deep learning theory for neural networks grounded in physics [2.132096006921048]
We argue that building large, fast and efficient neural networks on neuromorphic architectures requires rethinking the algorithms to implement and train them.
Our framework applies to a very broad class of models, namely systems whose state or dynamics are described by variational equations.
arXiv Detail & Related papers (2021-03-18T02:12:48Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.