論文の概要: Identification of TV Channel Watching from Smart Meter Data Using Energy
Disaggregation
- arxiv url: http://arxiv.org/abs/2007.00326v1
- Date: Wed, 1 Jul 2020 08:43:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 23:46:23.830327
- Title: Identification of TV Channel Watching from Smart Meter Data Using Energy
Disaggregation
- Title(参考訳): エネルギー分散を用いたスマートメータデータから視聴するテレビチャンネルの同定
- Authors: Pascal A. Schirmer, Iosif Mporas, Akbar Sheikh-Akbari
- Abstract要約: 本稿では,中央のスマートメーターを用いて,テレビやモニタ装置で再生されるマルチメディアコンテンツを識別する可能性について検討する。
提案アーキテクチャは, 集積エネルギー信号フレームと20個の基準テレビチャンネル信号との弾性マッチングに基づく。
- 参考スコア(独自算出の注目度): 14.05141917351931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart meters are used to measure the energy consumption of households.
Specifically, within the energy consumption task smart meter have been used for
load forecasting, reduction of consumer bills as well as reduction of grid
distortions. Except energy consumption smart meters can be used to disaggregate
energy consumption on device level. In this paper we investigate the potential
of identifying the multimedia content played by a TV or monitor device using
the central house's smart meter measuring the aggregated energy consumption
from all working appliances of the household. The proposed architecture is
based on elastic matching of aggregated energy signal frames with 20 reference
TV channel signals. Different elastic matching algorithms were used with the
best achieved video content identification accuracy being 93.6% using the MVM
algorithm.
- Abstract(参考訳): スマートメーターは家庭のエネルギー消費を測定するために使われる。
具体的には、エネルギー消費タスクスマートメーター内では、負荷予測、消費税の削減、グリッド歪みの低減に使用されてきた。
エネルギー消費のスマートメータは、デバイスレベルでエネルギー消費を分解するために使用できる。
本研究では,家庭内の全作業機器から収集したエネルギー消費量を計測し,テレビやモニター装置で再生されるマルチメディアコンテンツの同定の可能性について検討する。
提案アーキテクチャは, 集積エネルギー信号フレームと20個の基準テレビチャンネル信号との弾性マッチングに基づく。
様々な弾力性マッチングアルゴリズムが用いられ、MVMアルゴリズムを用いて最高の映像コンテンツ識別精度は93.6%であった。
関連論文リスト
- Non-Intrusive Electric Load Monitoring Approach Based on Current Feature
Visualization for Smart Energy Management [51.89904044860731]
我々はAIのコンピュータビジョン技術を用いて、スマートエネルギー管理のための非侵襲的な負荷監視手法を設計する。
マルチスケールの特徴抽出とアテンション機構を備えたU字型ディープニューラルネットワークを用いて,色特徴画像からすべての電気負荷を認識することを提案する。
論文 参考訳(メタデータ) (2023-08-08T04:52:19Z) - ecoBLE: A Low-Computation Energy Consumption Prediction Framework for
Bluetooth Low Energy [9.516475567386768]
Bluetooth Low Energy (BLE) はモノのインターネット(IoT)アプリケーションのためのデファクト技術であり、非常に低エネルギー消費を約束している。
本稿では,Long Short-Term Memory Projection (LSTMP)ベースのBLEエネルギー消費予測フレームワークを提案する。
提案手法は, 平均絶対パーセンテージ誤差 (MAPE) を最大12%とすることで, 異なるBLEノードのエネルギー消費を予測する。
論文 参考訳(メタデータ) (2023-08-02T13:04:23Z) - A Deep Learning Technique using Low Sampling rate for residential Non
Intrusive Load Monitoring [0.19662978733004596]
非侵入負荷監視(Non-Inrusive Load Monitoring、NILM)は、ブラインドソース分離の問題である。
低周波電力データ上で負荷分散を行うための,新しいディープニューラルネットワークに基づくアプローチを提案する。
私たちのニューラルネットワークは、需要側の詳細なフィードバックを生成し、エンドユーザに重要な洞察を提供することができます。
論文 参考訳(メタデータ) (2021-11-07T23:01:36Z) - Adversarial Energy Disaggregation for Non-intrusive Load Monitoring [78.47901044638525]
非侵入負荷モニタリング(Non-Inrusive Load Monitoring, NILM)としても知られるエネルギー分散は、家庭全体の電力消費を家電固有の個人消費に分けるという問題に挑戦する。
近年の進歩は、ディープニューラルネットワーク(DNN)がNILMに有利な性能を得られることを示している。
我々は、エネルギー分散タスクに新しくなったNILMに、敵対的学習の考え方を導入する。
論文 参考訳(メタデータ) (2021-08-02T03:56:35Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Appliance-Level Monitoring with Micro-Moment Smart Plugs [2.294014185517203]
大規模マルチアプライアンスエネルギー効率プログラムの一環として,マイクロモーメントベースのスマートプラグシステムを提案する。
プラグはホームオートメーション機能も備えている。
現在の実装結果から,提案システムではコスト効率の高いデプロイメントが実現されている。
論文 参考訳(メタデータ) (2020-12-10T16:22:40Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z) - Avoiding Occupancy Detection from Smart Meter using Adversarial Machine
Learning [0.7106986689736826]
本稿では,アタックとしてAdversarial Machine Learning Occupancy Detection Avoidance (AMLODA) フレームワークを導入する。
基本的に、提案するプライバシー保護フレームワークは、リアルタイムまたはほぼリアルタイムの電力使用情報を隠すように設計されている。
以上の結果から,提案手法はユーザのプライバシを強く支持することを示す。
論文 参考訳(メタデータ) (2020-10-23T20:02:48Z) - Demand-Side Scheduling Based on Multi-Agent Deep Actor-Critic Learning
for Smart Grids [56.35173057183362]
家庭用家電をネットでスケジュールできるスマートメーターが各家庭に備わっている需要側エネルギー管理の問題点を考察する。
目標は、リアルタイムの料金体系の下で全体のコストを最小化することです。
マルコフゲームとしてスマートグリッド環境の定式化を提案する。
論文 参考訳(メタデータ) (2020-05-05T07:32:40Z) - Energy Disaggregation with Semi-supervised Sparse Coding [0.0]
エネルギー分解研究は、集約されたエネルギー消費データを部品機器に分解することを目的としている。
本稿では,エネルギー保全のための大規模家庭用電力利用データセットを用いて,スパース符号化に基づく差別的分散モデルの評価を行った。
論文 参考訳(メタデータ) (2020-04-20T21:05:25Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。