論文の概要: ecoBLE: A Low-Computation Energy Consumption Prediction Framework for
Bluetooth Low Energy
- arxiv url: http://arxiv.org/abs/2309.16686v1
- Date: Wed, 2 Aug 2023 13:04:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 05:59:18.171576
- Title: ecoBLE: A Low-Computation Energy Consumption Prediction Framework for
Bluetooth Low Energy
- Title(参考訳): ecoBLE:Bluetooth低エネルギーのための低計算エネルギー消費予測フレームワーク
- Authors: Luisa Schuhmacher, Sofie Pollin, Hazem Sallouha
- Abstract要約: Bluetooth Low Energy (BLE) はモノのインターネット(IoT)アプリケーションのためのデファクト技術であり、非常に低エネルギー消費を約束している。
本稿では,Long Short-Term Memory Projection (LSTMP)ベースのBLEエネルギー消費予測フレームワークを提案する。
提案手法は, 平均絶対パーセンテージ誤差 (MAPE) を最大12%とすることで, 異なるBLEノードのエネルギー消費を予測する。
- 参考スコア(独自算出の注目度): 9.516475567386768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bluetooth Low Energy (BLE) is a de-facto technology for Internet of Things
(IoT) applications, promising very low energy consumption. However, this low
energy consumption accounts only for the radio part, and it overlooks the
energy consumption of other hardware and software components. Monitoring and
predicting the energy consumption of IoT nodes after deployment can
substantially aid in ensuring low energy consumption, calculating the remaining
battery lifetime, predicting needed energy for energy-harvesting nodes, and
detecting anomalies. In this paper, we introduce a Long Short-Term Memory
Projection (LSTMP)-based BLE energy consumption prediction framework together
with a dataset for a healthcare application scenario where BLE is widely
adopted. Unlike radio-focused theoretical energy models, our framework provides
a comprehensive energy consumption prediction, considering all components of
the IoT node, including the radio, sensor as well as microcontroller unit
(MCU). Our measurement-based results show that the proposed framework predicts
the energy consumption of different BLE nodes with a Mean Absolute Percentage
Error (MAPE) of up to 12%, giving comparable accuracy to state-of-the-art
energy consumption prediction with a five times smaller prediction model size.
- Abstract(参考訳): Bluetooth Low Energy (BLE) はモノのインターネット(IoT)アプリケーションのためのデファクト技術であり、非常に低エネルギー消費を約束している。
しかし、この低エネルギー消費は無線部分のみを考慮し、他のハードウェアやソフトウェアコンポーネントのエネルギー消費を見落としている。
デプロイ後のIoTノードのエネルギー消費の監視と予測は、低エネルギー消費の確保、残りのバッテリ寿命の計算、省エネノードに必要なエネルギーの予測、異常の検出に大きく貢献する。
本稿では、Long Short-Term Memory Projection (LSTMP)ベースのBLEエネルギー消費予測フレームワークと、BLEが広く採用されている医療アプリケーションシナリオのデータセットを紹介する。
無線による理論エネルギーモデルとは異なり、我々のフレームワークは、無線、センサ、マイクロコントローラユニット(MCU)を含むIoTノードの全コンポーネントを考慮して、包括的なエネルギー消費予測を提供する。
測定結果から,提案手法は平均絶対誤差(MAPE)が最大12%の異なるBLEノードのエネルギー消費を予測し,予測モデルのサイズが5倍の最先端エネルギー消費予測に匹敵する精度を示した。
関連論文リスト
- Intelligent Duty Cycling Management and Wake-up for Energy Harvesting IoT Networks with Correlated Activity [43.00680041385538]
本稿では,IoTデバイスが動作を維持するためのエネルギー回収能力に完全に依存する,エネルギーニュートラルなモノのインターネット(IoT)シナリオに対するアプローチを提案する。
我々は,IoTDの動作状態と伝送状態を表現するためにマルコフチェーン,エネルギー回収過程をモデル化する変調ポアソンプロセス,電池状態をモデル化する離散時間マルコフチェーンを使用する。
我々は、エネルギー効率と検出精度のトレードオフを打つことを目的とした、K近傍の近隣住民を対象としたデューティサイクル管理を提案する。
論文 参考訳(メタデータ) (2024-05-10T10:16:27Z) - Enhancing Energy-Awareness in Deep Learning through Fine-Grained Energy
Measurement [11.37120215795946]
本稿では,詳細なディープラーニングエネルギー消費測定のためのフレームワークであるFECoM(Fine-fine Energy Consumption Meter)を紹介する。
FECoMは、静的計測を用いて、計算負荷安定性や温度など様々な要因を考慮し、エネルギー消費をきめ細かいレベルで測定する課題に対処する。
論文 参考訳(メタデータ) (2023-08-23T17:32:06Z) - Sustainable Edge Intelligence Through Energy-Aware Early Exiting [0.726437825413781]
EHエッジインテリジェンスシステムにおいて,エネルギー適応型動的早期退避を提案する。
提案手法は, サンプルごとの最適計算量を決定する, エネルギー対応のEEポリシーを導出する。
その結果, エネルギーに依存しない政策と比較して, 精度は25%, サービスレートは35%向上した。
論文 参考訳(メタデータ) (2023-05-23T14:17:44Z) - Energy Loss Prediction in IoT Energy Services [0.43012765978447565]
クラウドソース型エネルギーサービスを共有する際のエネルギー損失を推定する新しいエネルギー損失予測フレームワークを提案する。
我々は,IoTデバイスのバッテリレベルを予測する新しいアテンションベースのアルゴリズムであるEaseformerを提案する。
提案手法の有効性と有効性を示すための一連の実験を行った。
論文 参考訳(メタデータ) (2023-05-16T09:07:08Z) - tinyMAN: Lightweight Energy Manager using Reinforcement Learning for
Energy Harvesting Wearable IoT Devices [0.0]
環境源からのエネルギー収穫は、低エネルギーのウェアラブルデバイスを動かすための有望な解決策である。
本稿では,リソース制約のあるウェアラブルIoTデバイスを対象とした,強化学習に基づくエネルギー管理フレームワークであるMintMANを提案する。
littleMANは2.36ms未満と27.75mu$Jを達成し、従来のアプローチに比べて最大45%高いユーティリティを維持している。
論文 参考訳(メタデータ) (2022-02-18T16:58:40Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
エネルギー収穫(EH)、認知無線(CR)、非直交多重アクセス(NOMA)の組み合わせはエネルギー効率を向上させるための有望な解決策である。
本稿では,決定論的CR-NOMA IoTシステムにおけるスペクトル,エネルギー,時間資源管理について検討する。
論文 参考訳(メタデータ) (2021-09-17T08:55:48Z) - Reinforcement Learning for Minimizing Age of Information in Real-time
Internet of Things Systems with Realistic Physical Dynamics [158.67956699843168]
本稿では,インターネット・オブ・モノ(IoT)デバイスにおける情報量(AoI)と総エネルギー消費の重み付けを最小化する問題について検討する。
サンプリングポリシを最適化するために,分散強化学習手法を提案する。
PM 2.5公害の実データを用いたシミュレーションでは、提案アルゴリズムがAoIの合計を最大17.8%および33.9%削減できることが示された。
論文 参考訳(メタデータ) (2021-04-04T03:17:26Z) - ECO: Enabling Energy-Neutral IoT Devices through Runtime Allocation of
Harvested Energy [0.8774604259603302]
本稿では,エネルギー制約下での目標デバイスの有用性を最適化するランタイムベースのエネルギー配分フレームワークを提案する。
提案フレームワークは, 効率的な反復アルゴリズムを用いて, 初期エネルギー割り当てを1日の初めに計算する。
このフレームワークは、太陽と運動エネルギーの収穫モードと、4772の異なるユーザーからのアメリカンタイムユースサーベイデータを使用して評価します。
論文 参考訳(メタデータ) (2021-02-26T17:21:25Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。