Optimisation of the PointPillars network for 3D object detection in
point clouds
- URL: http://arxiv.org/abs/2007.00493v1
- Date: Wed, 1 Jul 2020 13:50:42 GMT
- Title: Optimisation of the PointPillars network for 3D object detection in
point clouds
- Authors: Joanna Stanisz, Konrad Lis, Tomasz Kryjak, Marek Gorgon
- Abstract summary: In this paper we present our research on the optimisation of a deep neural network for 3D object detection in a point cloud.
We performed the experiments for the PointPillars network, which offers a reasonable compromise between detection accuracy and calculation complexity.
This will allow for real-time LiDAR data processing with low energy consumption.
- Score: 1.1470070927586016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present our research on the optimisation of a deep neural
network for 3D object detection in a point cloud. Techniques like quantisation
and pruning available in the Brevitas and PyTorch tools were used. We performed
the experiments for the PointPillars network, which offers a reasonable
compromise between detection accuracy and calculation complexity. The aim of
this work was to propose a variant of the network which we will ultimately
implement in an FPGA device. This will allow for real-time LiDAR data
processing with low energy consumption. The obtained results indicate that even
a significant quantisation from 32-bit floating point to 2-bit integer in the
main part of the algorithm, results in 5%-9% decrease of the detection
accuracy, while allowing for almost a 16-fold reduction in size of the model.
Related papers
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - PointPillars Backbone Type Selection For Fast and Accurate LiDAR Object
Detection [0.0]
We present the results of experiments on the impact of backbone selection of a deep convolutional neural network on detection accuracy and speed.
We chose the PointPillars network, which is characterised by a simple architecture, high speed, and modularity that allows for easy expansion.
arXiv Detail & Related papers (2022-09-30T06:18:14Z) - Anytime-Lidar: Deadline-aware 3D Object Detection [5.491655566898372]
We propose a scheduling algorithm, which intelligently selects the subset of the components to make effective time and accuracy trade-off on the fly.
We apply our approach to a state-of-art 3D object detection network, PointPillars, and evaluate its performance on Jetson Xavier AGX dataset.
arXiv Detail & Related papers (2022-08-25T16:07:10Z) - Deep Point Cloud Reconstruction [74.694733918351]
Point cloud obtained from 3D scanning is often sparse, noisy, and irregular.
To cope with these issues, recent studies have been separately conducted to densify, denoise, and complete inaccurate point cloud.
We propose a deep point cloud reconstruction network consisting of two stages: 1) a 3D sparse stacked-hourglass network as for the initial densification and denoising, 2) a refinement via transformers converting the discrete voxels into 3D points.
arXiv Detail & Related papers (2021-11-23T07:53:28Z) - Monocular Depth Estimation Primed by Salient Point Detection and
Normalized Hessian Loss [43.950140695759764]
We propose an accurate and lightweight framework for monocular depth estimation based on a self-attention mechanism stemming from salient point detection.
We introduce a normalized Hessian loss term invariant to scaling and shear along the depth direction, which is shown to substantially improve the accuracy.
The proposed method achieves state-of-the-art results on NYU-Depth-v2 and KITTI while using 3.1-38.4 times smaller model in terms of the number of parameters than baseline approaches.
arXiv Detail & Related papers (2021-08-25T07:51:09Z) - Spherical Interpolated Convolutional Network with Distance-Feature
Density for 3D Semantic Segmentation of Point Clouds [24.85151376535356]
Spherical interpolated convolution operator is proposed to replace the traditional grid-shaped 3D convolution operator.
The proposed method achieves good performance on the ScanNet dataset and Paris-Lille-3D dataset.
arXiv Detail & Related papers (2020-11-27T15:35:12Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
Pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras.
PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs.
We introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end.
arXiv Detail & Related papers (2020-04-07T02:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.