Ultra-fast two-qubit ion gate using sequences of resonant pulses
- URL: http://arxiv.org/abs/2007.00734v1
- Date: Wed, 1 Jul 2020 20:14:47 GMT
- Title: Ultra-fast two-qubit ion gate using sequences of resonant pulses
- Authors: E. Torrontegui, D. Heinrich, M. I. Hussain, R. Blatt, and J. J.
Garc\'ia-Ripoll
- Abstract summary: We propose a new protocol to implement ultra-fast two-qubit phase gates with trapped ions using spin-dependent kicks induced by resonant transitions.
Such gates allow us to increase the number of gate operations that can be completed within the coherence time of the ion-qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new protocol to implement ultra-fast two-qubit phase gates with
trapped ions using spin-dependent kicks induced by resonant transitions. By
only optimizing the allocation of the arrival times in a pulse train sequence
the gate is implemented in times faster than the trapping oscillation period
$T<2\pi/\omega$. Such gates allow us to increase the number of gate operations
that can be completed within the coherence time of the ion-qubits favoring the
development of scalable quantum computers.
Related papers
- Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Pairwise-parallel entangling gates on orthogonal modes in a trapped-ion
chain [0.0]
parallel operations are important for both near-term quantum computers and larger-scale fault-tolerant machines.
We propose and implement a pairwise-parallel gate scheme on a trapped-ion quantum computer.
We demonstrate the utility of this scheme by creating a GHZ state in one step using parallel gates with one overlapping qubit.
arXiv Detail & Related papers (2023-02-17T21:12:14Z) - Fast Ion Gates Outside the Lamb-Dicke Regime by Robust Quantum Optimal
Control [16.769083043152627]
We present a quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.
The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates.
Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation.
arXiv Detail & Related papers (2022-09-20T11:14:00Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit.
For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium.
A fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium.
arXiv Detail & Related papers (2022-06-13T14:34:11Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Fast multi-qubit global-entangling gates without individual addressing
of trapped ions [11.209327346836222]
We propose and study ways speeding up the entangling operations in the trapped ions system with high fidelity.
First, we find a scheme to increase the speed of a two-qubit gate without the limitation of trap frequency, which was considered as the fundamental limit.
Second, we study the fast gate scheme for entangling more than two qubits simultaneously.
arXiv Detail & Related papers (2022-01-18T13:20:42Z) - Proposal for entangling gates on fluxonium qubits via a two-photon
transition [0.0]
We propose a family of microwave-activated entangling gates on two capacitively coupled fluxonium qubits.
A microwave pulse applied to either qubit induces two-photon Rabi oscillations with a negligible leakage outside the computational subspace.
Our gate scheme is promising for large-scale quantum processors.
arXiv Detail & Related papers (2020-11-19T18:17:42Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Fast entangling gates in long ion chains [62.997667081978825]
We present a model for implementing fast entangling gates with ultra-fast pulses in arbitrarily long ion chains.
We find that achievable gate fidelity is independent of the number of ions in the chain.
We find that population transfer efficiencies of above $99.9%$ from individual ultra-fast pulses is the threshold for realising high-fidelity gates.
arXiv Detail & Related papers (2020-04-09T05:32:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.