論文の概要: BusTr: Predicting Bus Travel Times from Real-Time Traffic
- arxiv url: http://arxiv.org/abs/2007.00882v1
- Date: Thu, 2 Jul 2020 05:05:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 13:16:59.094505
- Title: BusTr: Predicting Bus Travel Times from Real-Time Traffic
- Title(参考訳): BusTr:リアルタイム交通からバスの走行時間を予測する
- Authors: Richard Barnes and Senaka Buthpitiya and James Cook and Alex Fabrikant
and Andrew Tomkins and Fangzhou Xu
- Abstract要約: 本稿では,道路交通予測をバス遅延予測に変換する機械学習モデルBusTrを提案する。
これはGoogle Mapsによって、公式のリアルタイムバス追跡が提供されていない世界の公共交通システムの大部分に利用されている。
- 参考スコア(独自算出の注目度): 11.832652376678295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present BusTr, a machine-learned model for translating road traffic
forecasts into predictions of bus delays, used by Google Maps to serve the
majority of the world's public transit systems where no official real-time bus
tracking is provided. We demonstrate that our neural sequence model improves
over DeepTTE, the state-of-the-art baseline, both in performance (-30% MAPE)
and training stability. We also demonstrate significant generalization gains
over simpler models, evaluated on longitudinal data to cope with a constantly
evolving world.
- Abstract(参考訳): 本稿では,道路交通予測をバス遅延予測に翻訳する機械学習モデルであるBusTrについて紹介する。
我々のニューラルシーケンスモデルは、パフォーマンス(-30% MAPE)とトレーニング安定性の両方において、最先端のベースラインであるDeepTTEよりも改善されていることを実証する。
また、より単純なモデルよりも大幅に一般化され、常に進化する世界に対応するために、縦方向のデータで評価される。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Guiding Attention in End-to-End Driving Models [49.762868784033785]
模倣学習によって訓練された視覚ベースのエンドツーエンドの運転モデルは、自動運転のための安価なソリューションにつながる可能性がある。
トレーニング中に損失項を追加することにより、これらのモデルの注意を誘導し、運転品質を向上させる方法について検討する。
従来の研究とは対照的に,本手法では,テスト期間中にこれらの有意義なセマンティックマップを利用できない。
論文 参考訳(メタデータ) (2024-04-30T23:18:51Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Real-Time Bus Arrival Prediction: A Deep Learning Approach for Enhanced
Urban Mobility [2.1374208474242815]
一般的な課題は、実際のバス到着時刻と予定された時刻とのミスマッチであり、固定されたスケジュールの混乱につながる。
本研究は,様々な交通機関(駅)におけるバス到着時刻を予測するための,革新的なAIに基づくデータ駆動手法を提案する。
完全に接続されたニューラルネットワークの展開により,公共バスの交通システムの精度と効率が向上する。
論文 参考訳(メタデータ) (2023-03-27T16:45:22Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - On Designing Day Ahead and Same Day Ridership Level Prediction Models
for City-Scale Transit Networks Using Noisy APC Data [0.0]
本稿では,複数のソースからのデータの収集,クリーン化,処理,マージを併用して,トランジットライダーシップの予測に機械学習モデルをトレーニングする手法を提案する。
ナッシュビルの公共交通機関が提供している現実の交通データに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2022-10-10T19:50:59Z) - A Dynamic Model for Bus Arrival Time Estimation based on Spatial
Patterns using Machine Learning [1.2891210250935146]
限られたデータセットを用いて到着時刻を予測するため,バス到着予測モデルを提案する。
インド・トゥムクル市の交通路の一つ、トゥムクル(Tumakuru)が選択され、2つの空間パターンに分けられる。
前回の旅行情報と機械学習モデルを用いてバス到着時刻を動的に予測するモデルを開発し、下流のバス停で到着時刻を推定する。
論文 参考訳(メタデータ) (2022-10-03T06:35:03Z) - Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph
Learning Framework [10.75153377806738]
グラフ畳み込みネットワーク(GCN)に基づく多パターン乗客フロー予測フレームワークMPGCNを提案する。
我々はGCNを用いて、有用なトポロジ情報から特徴を抽出し、バスの乗客に隠された移動パターンを認識するディープクラスタリング手法を導入する。
我々の知る限り、この論文は、グラフ学習からバスの乗客フローを予測するためのマルチパターンアプローチを採用した最初の試みである。
論文 参考訳(メタデータ) (2022-02-17T06:17:23Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - BusTime: Which is the Right Prediction Model for My Bus Arrival Time? [3.1761486589684975]
本稿では, このギャップを補うために, 広く用いられている予測モデルを解析するための汎用的, 実用的な評価枠組みを提案する。
特に、このフレームワークには、入力データポイントをはるかに少なくする生のバスGPSデータ前処理方法が含まれている。
また,都市マネジャーに対して,一般的な予測モデルのトレーニングおよび予測段階における実践的強みと弱みを分析し,予備的な結果を提示する。
論文 参考訳(メタデータ) (2020-03-20T17:03:36Z) - Physical-Virtual Collaboration Modeling for Intra-and Inter-Station
Metro Ridership Prediction [116.66657468425645]
本研究では,複雑なライダーシップパターンをテーラー設計グラフから効果的に学習できる物理仮想協調グラフネットワーク(PVCGN)を提案する。
特に、物理グラフは、研究されたメトロシステムの現実的なトポロジーに基づいて直接構築される。
類似度グラフと相関グラフを仮想トポロジで構築し, 駅間交通流の類似度と相関関係を導出する。
論文 参考訳(メタデータ) (2020-01-14T16:47:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。