論文の概要: Reinforcement Learning and its Connections with Neuroscience and
Psychology
- arxiv url: http://arxiv.org/abs/2007.01099v5
- Date: Sun, 26 Sep 2021 20:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 04:40:51.749127
- Title: Reinforcement Learning and its Connections with Neuroscience and
Psychology
- Title(参考訳): 強化学習と神経科学・心理学との関係
- Authors: Ajay Subramanian, Sharad Chitlangia, Veeky Baths
- Abstract要約: 我々は,脳内の学習と意思決定をモデル化するための候補として,強化学習が有望な候補であることを示す神経科学と心理学の両方の知見をレビューした。
次に、このRLと神経科学と心理学の関係と、AIと脳科学の両方の研究の進展における役割について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning methods have recently been very successful at
performing complex sequential tasks like playing Atari games, Go and Poker.
These algorithms have outperformed humans in several tasks by learning from
scratch, using only scalar rewards obtained through interaction with their
environment. While there certainly has been considerable independent innovation
to produce such results, many core ideas in reinforcement learning are inspired
by phenomena in animal learning, psychology and neuroscience. In this paper, we
comprehensively review a large number of findings in both neuroscience and
psychology that evidence reinforcement learning as a promising candidate for
modeling learning and decision making in the brain. In doing so, we construct a
mapping between various classes of modern RL algorithms and specific findings
in both neurophysiological and behavioral literature. We then discuss the
implications of this observed relationship between RL, neuroscience and
psychology and its role in advancing research in both AI and brain science.
- Abstract(参考訳): 強化学習手法は最近、Atariゲーム、Go、Pokerといった複雑なシーケンシャルなタスクを実行することに成功している。
これらのアルゴリズムは、環境との相互作用によって得られるスカラー報酬のみを用いて、スクラッチから学習することで、複数のタスクにおいて人間よりも優れています。
このような結果を生み出すための独立した革新は確かにあるが、強化学習における多くの中核的なアイデアは動物学習、心理学、神経科学の現象に触発されている。
本稿では,脳内の学習と意思決定をモデル化するための候補として,強化学習を実証する,神経科学と心理学の両方における多くの知見を包括的にレビューする。
そこで我々は,現代のRLアルゴリズムの様々なクラス間のマッピングと,神経生理学的および行動学的文献の具体的発見を構築した。
次に、このRLと神経科学と心理学の関係と、AIと脳科学の両方の研究の進展における役割について論じる。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Post-hoc and manifold explanations analysis of facial expression data based on deep learning [4.586134147113211]
本稿では、ニューラルネットワークが顔の表情データを処理し、保存し、それらと人間の心理的属性を関連づける方法について検討する。
研究者たちはディープラーニングモデルVGG16を利用して、ニューラルネットワークが顔データの主要な特徴を学習し、再現できることを実証した。
実験結果は、人間の感情や認知過程を理解するための深層学習モデルの可能性を明らかにした。
論文 参考訳(メタデータ) (2024-04-29T01:19:17Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
人間は絶えず変化する環境から情報を取得し、統合し、保持するのに優れていますが、人工ニューラルネットワーク(ANN)は破滅的な忘れ物を示します。
我々は、デイルの原理に従う排他的および抑制的ニューロンの集団を分離して構成する生物学的に妥当な枠組みを考察する。
次に,脳にインスパイアされた様々なメカニズムの役割と相互作用について包括的研究を行い,その内容は,疎密な非重複表現,ヘビアン学習,シナプス統合,学習イベントに伴う過去の活性化の再現などである。
論文 参考訳(メタデータ) (2023-04-13T16:34:12Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect
Reasoning in Programmable Attractor Neural Networks [2.0646127669654826]
本稿では,脳にインスパイアされた神経認知アーキテクチャであるNeuroCERILについて紹介する。
シミュレーションされたロボット模倣学習領域において,NeuroCERILは様々な手続き的スキルを習得できることを示す。
我々は、NeuroCERILは人間のような模倣学習の実行可能な神経モデルであると結論付けた。
論文 参考訳(メタデータ) (2022-11-11T19:56:11Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - The curious case of developmental BERTology: On sparsity, transfer
learning, generalization and the brain [7.33811357166334]
このエッセイでは,大規模言語モデルのレンズを通して,深層学習と神経科学の交点を探究する。
知覚神経生理学や認知神経生理学が効果的なディープニューラルネットワークアーキテクチャにインスピレーションを与えたのと同じように、ここでは生物学的神経開発がいかに効率的で堅牢な最適化手順を刺激するかを考察する。
論文 参考訳(メタデータ) (2020-07-07T20:16:30Z) - Deep Reinforcement Learning and its Neuroscientific Implications [19.478332877763417]
強力な人工知能の出現は、神経科学の新しい研究方向を定義している。
深層強化学習(Deep RL)は、学習、表現、意思決定の間の相互作用を研究するための枠組みを提供する。
Deep RLは、新しい研究ツールセットと、幅広い新しい仮説を提供する。
論文 参考訳(メタデータ) (2020-07-07T19:27:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。