Reinforcement Learning and its Connections with Neuroscience and
Psychology
- URL: http://arxiv.org/abs/2007.01099v5
- Date: Sun, 26 Sep 2021 20:01:31 GMT
- Title: Reinforcement Learning and its Connections with Neuroscience and
Psychology
- Authors: Ajay Subramanian, Sharad Chitlangia, Veeky Baths
- Abstract summary: We review findings in both neuroscience and psychology that evidence reinforcement learning as a promising candidate for modeling learning and decision making in the brain.
We then discuss the implications of this observed relationship between RL, neuroscience and psychology and its role in advancing research in both AI and brain science.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning methods have recently been very successful at
performing complex sequential tasks like playing Atari games, Go and Poker.
These algorithms have outperformed humans in several tasks by learning from
scratch, using only scalar rewards obtained through interaction with their
environment. While there certainly has been considerable independent innovation
to produce such results, many core ideas in reinforcement learning are inspired
by phenomena in animal learning, psychology and neuroscience. In this paper, we
comprehensively review a large number of findings in both neuroscience and
psychology that evidence reinforcement learning as a promising candidate for
modeling learning and decision making in the brain. In doing so, we construct a
mapping between various classes of modern RL algorithms and specific findings
in both neurophysiological and behavioral literature. We then discuss the
implications of this observed relationship between RL, neuroscience and
psychology and its role in advancing research in both AI and brain science.
Related papers
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Post-hoc and manifold explanations analysis of facial expression data based on deep learning [4.586134147113211]
This paper investigates how neural networks process and store facial expression data and associate these data with a range of psychological attributes produced by humans.
Researchers utilized deep learning model VGG16, demonstrating that neural networks can learn and reproduce key features of facial data.
The experimental results reveal the potential of deep learning models in understanding human emotions and cognitive processes.
arXiv Detail & Related papers (2024-04-29T01:19:17Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Study of Biologically Plausible Neural Network: The Role and
Interactions of Brain-Inspired Mechanisms in Continual Learning [13.041607703862724]
Humans excel at continually acquiring, consolidating, and retaining information from an ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic forgetting.
We consider a biologically plausible framework that constitutes separate populations of exclusively excitatory and inhibitory neurons that adhere to Dale's principle.
We then conduct a comprehensive study on the role and interactions of different mechanisms inspired by the brain, including sparse non-overlapping representations, Hebbian learning, synaptic consolidation, and replay of past activations that accompanied the learning event.
arXiv Detail & Related papers (2023-04-13T16:34:12Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect
Reasoning in Programmable Attractor Neural Networks [2.0646127669654826]
We present NeuroCERIL, a brain-inspired neurocognitive architecture that uses a novel hypothetico-deductive reasoning procedure.
We show that NeuroCERIL can learn various procedural skills in a simulated robotic imitation learning domain.
We conclude that NeuroCERIL is a viable neural model of human-like imitation learning.
arXiv Detail & Related papers (2022-11-11T19:56:11Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - The curious case of developmental BERTology: On sparsity, transfer
learning, generalization and the brain [7.33811357166334]
In this essay, we explore a point of intersection between deep learning and neuroscience, through the lens of large language models.
Just like perceptual and cognitive neurophysiology has inspired effective deep neural network architectures, here we explore how biological neural development might inspire efficient and robust optimization procedures.
arXiv Detail & Related papers (2020-07-07T20:16:30Z) - Deep Reinforcement Learning and its Neuroscientific Implications [19.478332877763417]
The emergence of powerful artificial intelligence is defining new research directions in neuroscience.
Deep reinforcement learning (Deep RL) offers a framework for studying the interplay among learning, representation and decision-making.
Deep RL offers a new set of research tools and a wide range of novel hypotheses.
arXiv Detail & Related papers (2020-07-07T19:27:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.