論文の概要: Tight Bounds on Minimax Regret under Logarithmic Loss via
Self-Concordance
- arxiv url: http://arxiv.org/abs/2007.01160v2
- Date: Mon, 3 Aug 2020 14:46:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 13:26:03.610957
- Title: Tight Bounds on Minimax Regret under Logarithmic Loss via
Self-Concordance
- Title(参考訳): 自己一致による対数損失下でのミニマックスレグレトのタイトバウンド
- Authors: Blair Bilodeau, Dylan J. Foster, Daniel M. Roy
- Abstract要約: 連続)計量エントロピー $mathcalO(gamma-p)$ at scale $gamma$ を持つ任意の専門家クラスに対して、ミニマックス後悔は $mathcalO(np/(p+1))$ であることを示す。
我々の手法の応用として、専門家の非パラメトリックリプシッツ類に対するミニマックス後悔を解消する。
- 参考スコア(独自算出の注目度): 37.0414602993676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the classical problem of sequential probability assignment under
logarithmic loss while competing against an arbitrary, potentially
nonparametric class of experts. We obtain tight bounds on the minimax regret
via a new approach that exploits the self-concordance property of the
logarithmic loss. We show that for any expert class with (sequential) metric
entropy $\mathcal{O}(\gamma^{-p})$ at scale $\gamma$, the minimax regret is
$\mathcal{O}(n^{p/(p+1)})$, and that this rate cannot be improved without
additional assumptions on the expert class under consideration. As an
application of our techniques, we resolve the minimax regret for nonparametric
Lipschitz classes of experts.
- Abstract(参考訳): 対数損失の下での逐次確率割当の古典的な問題を考える一方で、任意の非パラメトリックな専門家のクラスと競合する。
我々は,対数損失の自己一致性を利用する新たなアプローチにより,ミニマックス後悔の厳密な境界を得る。
我々は、(逐次)計量エントロピー $\mathcal{O}(\gamma^{-p})$ at scale $\gamma$ を持つ任意の専門家クラスに対して、ミニマックス後悔は $\mathcal{O}(n^{p/(p+1)})$ であり、検討中のエキスパートクラスについて追加の仮定なしでは改善できないことを示す。
この手法の応用として,非パラメトリックリプシッツクラスの専門家に対するミニマックスの後悔を解消する。
関連論文リスト
- Rate-Preserving Reductions for Blackwell Approachability [72.03309261614991]
Abernethy et al. (2011) はブラックウェルのアプローチ可能性と非回帰学習が等価であることを示した。
一般化された後悔最小化の例に対して、いかなるアプローチ可能性のインスタンスも厳格に削減できることが示される。
論文 参考訳(メタデータ) (2024-06-10T23:23:52Z) - Adversarial Contextual Bandits Go Kernelized [21.007410990554522]
本研究では、ヒルベルト核空間に属する損失関数を組み込むことにより、逆線形文脈帯域におけるオンライン学習の問題を一般化する。
本稿では,損失関数を推定し,ほぼ最適の後悔の保証を再現するための新しい楽観的偏り推定器を提案する。
論文 参考訳(メタデータ) (2023-10-02T19:59:39Z) - Private Online Prediction from Experts: Separations and Faster Rates [74.52487417350221]
専門家によるオンライン予測は機械学習の基本的な問題であり、いくつかの研究がプライバシーの制約の下でこの問題を研究している。
本研究では,非適応的敵に対する最良な既存アルゴリズムの残差を克服する新たなアルゴリズムを提案し,解析する。
論文 参考訳(メタデータ) (2022-10-24T18:40:19Z) - Expected Worst Case Regret via Stochastic Sequential Covering [14.834625066344582]
我々は、既知のミニマックス後悔を一般化し包含する、予想される最悪のミニマックス後悔の概念を導入する。
そのようなミニマックスの後悔に対して、我々は上大域シーケンシャル被覆という新しい概念を通じて厳密な境界を確立する。
対数損失と一般に混合可能な損失に対する最小限の後悔に対する厳密な境界を確立することで,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-09-09T17:31:46Z) - Precise Regret Bounds for Log-loss via a Truncated Bayesian Algorithm [14.834625066344582]
対数損失下での逐次的オンライン回帰(シーケンシャル確率代入)について検討する。
我々は、専門家のクラスで発生する過剰な損失として定義される連続したミニマックスの後悔に対して、厳密で、しばしば一致し、下限と上限を得ることに重点を置いている。
論文 参考訳(メタデータ) (2022-05-07T22:03:00Z) - The Best of Both Worlds: Reinforcement Learning with Logarithmic Regret
and Policy Switches [84.54669549718075]
漸進的強化学習(RL)における後悔の最小化問題について検討する。
一般関数クラスと一般モデルクラスで学ぶことに集中する。
対数的後悔境界は$O(log T)$スイッチングコストのアルゴリズムによって実現可能であることを示す。
論文 参考訳(メタデータ) (2022-03-03T02:55:55Z) - No-Regret Learning with Unbounded Losses: The Case of Logarithmic
Pooling [12.933990572597583]
対数プール法(対数プール)として知られる基本的および実用的アグリゲーション法に焦点をあてる。
オンラインの対戦環境において,最適なパラメータ集合を学習する問題を考察する。
本稿では,O(sqrtT log T)$experied regretに達する方法で,専門家の重みを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-22T22:27:25Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
論文 参考訳(メタデータ) (2021-02-06T15:05:14Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
マルコフ決定過程(CMDP)に対するオンライン学習の検討
本稿では,遷移モデルから標本化した軌跡のみを必要とする,新しいEmphupper confidence primal-dualアルゴリズムを提案する。
我々の分析では、ラグランジュ乗算過程の新たな高確率ドリフト解析を、高信頼強化学習の記念後悔解析に組み入れている。
論文 参考訳(メタデータ) (2020-03-02T05:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。