論文の概要: Online nonparametric regression with Sobolev kernels
- arxiv url: http://arxiv.org/abs/2102.03594v1
- Date: Sat, 6 Feb 2021 15:05:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-09 15:51:31.193816
- Title: Online nonparametric regression with Sobolev kernels
- Title(参考訳): Sobolevカーネルによるオンライン非パラメトリック回帰
- Authors: Oleksandr Zadorozhnyi, Pierre Gaillard, Sebastien Gerschinovitz,
Alessandro Rudi
- Abstract要約: 我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
- 参考スコア(独自算出の注目度): 99.12817345416846
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work we investigate the variation of the online kernelized ridge
regression algorithm in the setting of $d-$dimensional adversarial
nonparametric regression. We derive the regret upper bounds on the classes of
Sobolev spaces $W_{p}^{\beta}(\mathcal{X})$, $p\geq 2, \beta>\frac{d}{p}$. The
upper bounds are supported by the minimax regret analysis, which reveals that
in the cases $\beta> \frac{d}{2}$ or $p=\infty$ these rates are (essentially)
optimal. Finally, we compare the performance of the kernelized ridge regression
forecaster to the known non-parametric forecasters in terms of the regret rates
and their computational complexity as well as to the excess risk rates in the
setting of statistical (i.i.d.) nonparametric regression.
- Abstract(参考訳): 本研究では,$d-$dimensional adversarial nonparametric regressionの設定におけるオンラインカーネル化リッジ回帰アルゴリズムの変動について検討する。
我々は、ソボレフ空間 $W_{p}^{\beta}(\mathcal{X})$, $p\geq 2, \beta>\frac{d}{p}$ のクラス上の後悔の上界を導出する。
上界はミニマックス後悔解析(英語版)によって支えられ、この場合、$\beta> \frac{d}{2}$ または $p=\infty$ は(本質的に)最適である。
最後に、カーネル化されたリッジ回帰予測器の性能を、後悔率とその計算の複雑さと統計的設定における過剰リスク率の点で既知の非パラメトリック予測器と比較する(すなわち)。
非パラメトリック回帰。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Retire: Robust Expectile Regression in High Dimensions [3.9391041278203978]
ペナル化量子化法と期待回帰法は、高次元データの異方性検出に有用な手段を提供する。
我々は,頑健な期待回帰(退職)を提案し,研究する。
提案手法は半平滑なニュートン座標降下アルゴリズムにより効率よく解けることを示す。
論文 参考訳(メタデータ) (2022-12-11T18:03:12Z) - Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem [4.503368323711748]
経験的観測から2つのヒルベルト空間の間の線型作用素を$theta$で学習する問題を考察する。
この目標を$theta$の逆問題として、フォワード演算子が一般に非コンパクトであるような特徴で再定義できることが示される。
この逆問題は、スカラー応答回帰の導出に伴う既知のコンパクト逆問題と等価であることを示す。
論文 参考訳(メタデータ) (2022-11-16T12:33:01Z) - Benign overfitting and adaptive nonparametric regression [71.70323672531606]
本研究では,データポイントを高い確率で補間する連続関数である推定器を構築する。
我々は未知の滑らかさに適応してH"古いクラスのスケールにおいて平均2乗リスクの下で最小値の最適速度を得る。
論文 参考訳(メタデータ) (2022-06-27T14:50:14Z) - Dynamic Regret for Strongly Adaptive Methods and Optimality of Online
KRR [13.165557713537389]
我々は、強い適応性(SA)アルゴリズムを、動的後悔を制御するための原則的な方法と見なせることを示した。
我々は,オンラインKernel Ridge Regression(KRR)の最小限の最適性を確立する,ある罰則による新たな下限を導出する。
論文 参考訳(メタデータ) (2021-11-22T21:52:47Z) - Stochastic Online Linear Regression: the Forward Algorithm to Replace
Ridge [24.880035784304834]
オンラインリッジ回帰とフォワードアルゴリズムに対して高い確率的後悔境界を導出する。
これにより、オンライン回帰アルゴリズムをより正確に比較し、有界な観測と予測の仮定を排除できる。
論文 参考訳(メタデータ) (2021-11-02T13:57:53Z) - A Precise Performance Analysis of Support Vector Regression [105.94855998235232]
我々は,n$の線形測定に応用したハードおよびソフトサポートベクター回帰法について検討した。
得られた結果は、ハードおよびソフトサポートベクトル回帰アルゴリズムの設計に介入するパラメータを最適に調整するために使用される。
論文 参考訳(メタデータ) (2021-05-21T14:26:28Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Consistent Online Gaussian Process Regression Without the Sample
Complexity Bottleneck [14.309243378538012]
本稿では,現在の後方中心のHellingerメトリックに対して,エラー近傍を修正可能なオンライン圧縮方式を提案する。
一定の誤差半径の場合、POG は集団後部の近傍 (Theorem 1(ii)) に収束するが、特徴空間の計量エントロピーによって決定される有限メモリのオン・ウォーストに収束する。
論文 参考訳(メタデータ) (2020-04-23T11:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。