論文の概要: Maximizing Cohesion and Separation in Graph Representation Learning: A
Distance-aware Negative Sampling Approach
- arxiv url: http://arxiv.org/abs/2007.01423v2
- Date: Thu, 21 Jan 2021 08:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 14:01:21.435735
- Title: Maximizing Cohesion and Separation in Graph Representation Learning: A
Distance-aware Negative Sampling Approach
- Title(参考訳): グラフ表現学習における結合と分離の最大化:距離対応負サンプリングアプローチ
- Authors: M. Maruf and Anuj Karpatne
- Abstract要約: 非教師付きグラフ表現学習(GRL)とは、与えられた未ラベルグラフの構造を反映したノード埋め込みの低次元空間を学習することである。
このタスクの既存のアルゴリズムは、近隣ノードへのノード埋め込みの類似性を最大化する負のサンプリング目的に依存している。
本稿では,遠隔ノードペアの分離を最大化する,距離対応負サンプリング(DNS)を提案する。
- 参考スコア(独自算出の注目度): 9.278968846447215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of unsupervised graph representation learning (GRL) is to learn
a low-dimensional space of node embeddings that reflect the structure of a
given unlabeled graph. Existing algorithms for this task rely on negative
sampling objectives that maximize the similarity in node embeddings at nearby
nodes (referred to as "cohesion") by maintaining positive and negative corpus
of node pairs. While positive samples are drawn from node pairs that co-occur
in short random walks, conventional approaches construct negative corpus by
uniformly sampling random pairs, thus ignoring valuable information about
structural dissimilarity among distant node pairs (referred to as
"separation"). In this paper, we present a novel Distance-aware Negative
Sampling (DNS) which maximizes the separation of distant node-pairs while
maximizing cohesion at nearby node-pairs by setting the negative sampling
probability proportional to the pair-wise shortest distances. Our approach can
be used in conjunction with any GRL algorithm and we demonstrate the efficacy
of our approach over baseline negative sampling methods over downstream node
classification tasks on a number of benchmark datasets and GRL algorithms. All
our codes and datasets are available at
https://github.com/Distance-awareNS/DNS/.
- Abstract(参考訳): unsupervised graph representation learning(grl)の目的は、与えられたラベルなしグラフの構造を反映したノード埋め込みの低次元空間を学ぶことである。
このタスクの既存のアルゴリズムは、ノードペアの正のコーパスと負のコーパスを維持することで、ノード埋め込みの類似性を最大化する負のサンプリング目的に依存している。
正のサンプルは短いランダムウォークで共起するノード対から引き出されるが、従来の手法では一様にランダムペアをサンプリングすることで負のコーパスを構築するため、遠いノード対間の構造的相似性についての貴重な情報を無視している(「分離」と呼ぶ)。
本稿では,2対の短距離に比例する負のサンプリング確率を設定することにより,近傍ノードペアにおける凝集を最大化しながら,遠隔ノードペアの分離を最大化する,距離対応負サンプリング(DNS)を提案する。
提案手法は任意のGRLアルゴリズムと組み合わせて使用することができ,多くのベンチマークデータセットとGRLアルゴリズムを用いて,下流ノード分類タスクに対するベースライン負のサンプリング手法に対するアプローチの有効性を示す。
コードとデータセットはすべてhttps://github.com/Distance-awareNS/DNS/.comで公開されています。
関連論文リスト
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
本稿では,集約中に含まれるノード数を削減する手法を提案する。
線形変換された特徴の重み付け和を用いてノード表現の近似を学習し、スパース分解によりこれを実現できる。
提案手法は推論高速化のために設計された他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T17:52:16Z) - Bootstrap Latents of Nodes and Neighbors for Graph Self-Supervised Learning [27.278097015083343]
対照的な学習は、モデルの崩壊を防ぎ、差別的な表現を学ぶために負のサンプルを必要とする。
我々は、アンカーノードに対する隣人の支持率を予測するために、クロスアテンションモジュールを導入する。
本手法は, 負の正試料と雑音の正試料とのクラス衝突を緩和し, クラス内コンパクト度を同時に向上する。
論文 参考訳(メタデータ) (2024-08-09T14:17:52Z) - Reliable Node Similarity Matrix Guided Contrastive Graph Clustering [51.23437296378319]
我々は、新しいフレームワーク、Reliable Node similarity Matrix Guided Contrastive Graph Clustering (NS4GC)を紹介した。
本手法は,ノード近傍のアライメントとセマンティック・アウェア・スパリフィケーションを導入し,ノード類似度行列が正確かつ効率的にスパースであることを保証する。
論文 参考訳(メタデータ) (2024-08-07T13:36:03Z) - Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings [8.858596502294471]
ノードワイドの反発は、集合的に、ノード埋め込み次元の近似的な再中心化であることを示す。
本稿では,教師付きあるいは教師なしのアルゴリズムを高速化するアルゴリズム拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-30T19:43:01Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
グラフ畳み込みネットワーク(GCN)は、レコメンデーションシステムのためのユーザおよびアイテム表現の学習に成功している。
既存のGCNベースのほとんどのメソッドは、高階グラフ畳み込みを実行しながら、ユーザの複数の関心事を見落としている。
クラスタベースグラフ協調フィルタリング(ClusterGCF)と呼ばれる新しいGCNベースのレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:05:16Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
リンク予測のためのグラフニューラルネットワーク(GNN)は、緩やかに2つの広いカテゴリに分けられる。
まず、Emphnode-wiseアーキテクチャは各ノードの個別の埋め込みをプリコンパイルし、後に単純なデコーダで結合して予測を行う。
第二に、エンフェッジワイド法は、ペアワイド関係の表現を強化するために、エッジ固有のサブグラフ埋め込みの形成に依存している。
論文 参考訳(メタデータ) (2023-10-14T07:02:54Z) - STERLING: Synergistic Representation Learning on Bipartite Graphs [78.86064828220613]
二部グラフ表現学習の基本的な課題は、ノードの埋め込みを抽出する方法である。
最近の二部グラフSSL法は、正ノード対と負ノード対を識別することによって埋め込みを学習する対照的な学習に基づいている。
負のノードペアを持たないノード埋め込みを学習するための新しい相乗的表現学習モデル(STERling)を提案する。
論文 参考訳(メタデータ) (2023-01-25T03:21:42Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Node Representation Learning in Graph via Node-to-Neighbourhood Mutual
Information Maximization [27.701736055800314]
グラフにおける情報ノード表現の学習の鍵は、近隣からコンテキスト情報を得る方法にある。
本稿では,ノードの隠蔽表現と周辺領域の相互情報を直接的に最大化することで,自己教師付きノード表現学習戦略を提案する。
我々のフレームワークは、表現学習の質と効率を裏付ける正の選択が相反する比較的損失によって最適化されている。
論文 参考訳(メタデータ) (2022-03-23T08:21:10Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z) - Investigating Extensions to Random Walk Based Graph Embedding [0.3867052484157571]
ランダムウォークに基づくグラフ埋め込みの新たな拡張を提案する。これは、ウォークから最も頻度の低いノードのパーセンテージを異なるレベルで除去する。
この除去により、我々は遠く離れたノードがノードの近傍に存在することをシミュレートし、従ってそれらの接続を明示的に表現する。
その結果、ランダムウォークベースの手法の拡張(うちを含む)は、予測性能をほんの少しだけ改善することがわかった。
論文 参考訳(メタデータ) (2020-02-17T21:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。