論文の概要: Investigating Extensions to Random Walk Based Graph Embedding
- arxiv url: http://arxiv.org/abs/2002.07252v1
- Date: Mon, 17 Feb 2020 21:14:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 12:17:27.395391
- Title: Investigating Extensions to Random Walk Based Graph Embedding
- Title(参考訳): ランダムウォークに基づくグラフ埋め込みの拡張の検討
- Authors: Joerg Schloetterer, Martin Wehking, Fatemeh Salehi Rizi, Michael
Granitzer
- Abstract要約: ランダムウォークに基づくグラフ埋め込みの新たな拡張を提案する。これは、ウォークから最も頻度の低いノードのパーセンテージを異なるレベルで除去する。
この除去により、我々は遠く離れたノードがノードの近傍に存在することをシミュレートし、従ってそれらの接続を明示的に表現する。
その結果、ランダムウォークベースの手法の拡張(うちを含む)は、予測性能をほんの少しだけ改善することがわかった。
- 参考スコア(独自算出の注目度): 0.3867052484157571
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph embedding has recently gained momentum in the research community, in
particular after the introduction of random walk and neural network based
approaches. However, most of the embedding approaches focus on representing the
local neighborhood of nodes and fail to capture the global graph structure,
i.e. to retain the relations to distant nodes. To counter that problem, we
propose a novel extension to random walk based graph embedding, which removes a
percentage of least frequent nodes from the walks at different levels. By this
removal, we simulate farther distant nodes to reside in the close neighborhood
of a node and hence explicitly represent their connection. Besides the common
evaluation tasks for graph embeddings, such as node classification and link
prediction, we evaluate and compare our approach against related methods on
shortest path approximation. The results indicate, that extensions to random
walk based methods (including our own) improve the predictive performance only
slightly - if at all.
- Abstract(参考訳): グラフ埋め込みは、特にランダムウォークとニューラルネットワークベースのアプローチを導入して以来、研究コミュニティで最近勢いを増している。
しかし、埋め込みアプローチのほとんどはノードの局所的な近傍を表すことに重点を置いており、グローバルグラフ構造、すなわち遠いノードとの関係を維持することに失敗している。
この問題を解決するために,ランダムウォークに基づくグラフ埋め込みの新たな拡張を提案し,異なるレベルのウォークから最も頻度の低いノードのパーセンテージを除去する。
この除去により、ノードの近傍に存在する遠方のノードをシミュレートし、そのノードの接続を明示的に表現する。
ノード分類やリンク予測などのグラフ埋め込みの一般的な評価タスクに加えて,最短経路近似における関連する手法との比較を行った。
その結果、ランダムウォークベースのメソッド(私たち自身を含む)の拡張によって、予測パフォーマンスがわずかに向上することがわかった。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Half-Hop: A graph upsampling approach for slowing down message passing [31.26080679115766]
メッセージパッシングニューラルネットワークにおける学習を改善するためのフレームワークを提案する。
我々のアプローチは基本的に、各エッジに"スローノード"を追加することで、元のグラフのエッジをサンプリングする。
提案手法は入力グラフのみを修正し,既存のモデルでプラグイン・アンド・プレイしやすくする。
論文 参考訳(メタデータ) (2023-08-17T22:24:15Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Visiting Distant Neighbors in Graph Convolutional Networks [0.0]
本稿では,グラフデータの深層学習のためのグラフ畳み込みネットワーク手法を,隣接ノードの高次化に拡張する。
この上位の隣人の訪問客は、オリジナルのモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-01-26T06:37:11Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model [23.525079144108567]
コンテキストパスに基づくグラフニューラルネットワーク(CP-GNN)モデルを構築した。
ノード間の高次関係をノードの埋め込みに埋め込む。
最先端のコミュニティ検出手法よりも優れています。
論文 参考訳(メタデータ) (2021-09-05T12:28:00Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Learning Representations using Spectral-Biased Random Walks on Graphs [18.369974607582584]
このプロセスにおける確率バイアスが、プロセスによって選択されたノードの品質にどの程度影響するかを調査する。
我々は、この近傍を正規化ラプラス行列として表されるノードの近傍部分グラフのスペクトルに基づく確率測度として簡潔に捉えた。
我々は,様々な実世界のデータセット上で,最先端ノード埋め込み技術に対する我々のアプローチを実証的に評価した。
論文 参考訳(メタデータ) (2020-05-19T20:42:43Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。