論文の概要: Generative Modeling for Atmospheric Convection
- arxiv url: http://arxiv.org/abs/2007.01444v2
- Date: Sat, 24 Oct 2020 22:43:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 06:12:19.313533
- Title: Generative Modeling for Atmospheric Convection
- Title(参考訳): 大気対流生成モデル
- Authors: Griffin Mooers, Jens Tuyls, Stephan Mandt, Michael Pritchard, Tom
Beucler
- Abstract要約: 変分オートエンコーダ(VAE)の設計と実装により、小規模の嵐を安価に再現する生成モデルの可能性を探る。
VAEは、地球にまたがる6*106サンプルに対して、高分解能の垂直速度場の構造再現、次元縮小、クラスタリングを行う。
対流の空間構造を再構築し、対流組織体制の教師なしクラスタリングを行い、異常な嵐活動を特定する。
- 参考スコア(独自算出の注目度): 13.104272504735052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While cloud-resolving models can explicitly simulate the details of
small-scale storm formation and morphology, these details are often ignored by
climate models for lack of computational resources. Here, we explore the
potential of generative modeling to cheaply recreate small-scale storms by
designing and implementing a Variational Autoencoder (VAE) that performs
structural replication, dimensionality reduction, and clustering of
high-resolution vertical velocity fields. Trained on ~6*10^6 samples spanning
the globe, the VAE successfully reconstructs the spatial structure of
convection, performs unsupervised clustering of convective organization
regimes, and identifies anomalous storm activity, confirming the potential of
generative modeling to power stochastic parameterizations of convection in
climate models.
- Abstract(参考訳): クラウド解決モデルは、小規模の嵐の形成と形態の詳細を明示的にシミュレートすることができるが、これらの詳細は、計算資源の欠如により、しばしば気候モデルによって無視される。
本稿では,構造的複製,次元縮小,高分解能垂直速度場のクラスタリングを行う変分オートエンコーダ(vae)の設計と実装により,小型ストームを安価に再現するための生成モデリングの可能性を検討する。
地球にまたがる6*10^6のサンプルで訓練されたVAEは、対流の空間構造を再構築し、対流組織体制の教師なしクラスタリングを行い、異常な嵐活動を特定し、気象モデルにおける対流の確率的パラメータ化を動力源とする生成モデルの可能性を確認する。
関連論文リスト
- Dynamical-generative downscaling of climate model ensembles [13.376226374728917]
本稿では,動的ダウンスケーリングと生成人工知能を組み合わせることで,コストを削減し,下降した気候予測の不確実性評価を改善する手法を提案する。
このフレームワークでは、RCMはESMの出力を中間分解能に動的にダウンスケールし、次いで生成拡散モデルにより、目標スケールへの分解能をさらに改善する。
論文 参考訳(メタデータ) (2024-10-02T17:31:01Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Physics-Informed Machine Learning Towards A Real-Time Spacecraft Thermal Simulator [15.313871831214902]
ここで提示されるPIMLモデルまたはハイブリッドモデルは、軌道上の熱負荷条件によって与えられるノイズの低減を予測するニューラルネットワークで構成されている。
我々は,ハイブリッドモデルの計算性能と精度を,データ駆動型ニューラルネットモデルと,地球周回小型宇宙船の高忠実度有限差分モデルと比較した。
PIMLベースのアクティブノダライゼーションアプローチは、ニューラルネットワークモデルや粗いメッシュモデルよりもはるかに優れた一般化を提供すると同時に、高忠実度モデルと比較して計算コストを最大1.7倍削減する。
論文 参考訳(メタデータ) (2024-07-08T16:38:52Z) - Latent Diffusion Model for Generating Ensembles of Climate Simulations [2.144088660722956]
我々は、広範囲の気候シミュレーションに基づいて、新しい生成的深層学習アプローチを訓練する。
潜在空間表現を利用することで、我々のモデルは最小限のメモリを必要とする大規模なアンサンブルをオンザフライで迅速に生成できる。
論文 参考訳(メタデータ) (2024-07-02T08:59:24Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
本研究では,4次元生成拡散モデルと物理インフォームドガイダンスを導入し,現実的な流れ状態列の生成を可能にする。
提案手法は, 乱流多様体からのサブシーケンス全体のサンプリングに有効であることが示唆された。
この進展は、乱流の時間的進化を分析するために生成モデリングを適用するための扉を開く。
論文 参考訳(メタデータ) (2024-06-17T10:21:01Z) - Evaluating the diversity and utility of materials proposed by generative
models [38.85523285991743]
本稿では, 逆設計プロセスの一部として, 物理誘導結晶生成モデルという, 最先端の生成モデルを用いる方法を示す。
本研究は, 逆設計を改善するために, 生成モデルをどのように改善するかを示唆する。
論文 参考訳(メタデータ) (2023-08-09T14:42:08Z) - Machine learning emulation of a local-scale UK climate model [22.374171443798037]
我々は,高解像度降雨の現実的なサンプルを生成できる機械学習モデルを初めて示す。
自己学習型位置情報を低分解能の相対渦性, 量子および試料の時間平均に付加することにより, 高分解能シミュレーションとよく一致した。
論文 参考訳(メタデータ) (2022-11-29T11:44:35Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。