論文の概要: Selecting Regions of Interest in Large Multi-Scale Images for Cancer
Pathology
- arxiv url: http://arxiv.org/abs/2007.01866v1
- Date: Fri, 3 Jul 2020 15:27:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:20:50.882928
- Title: Selecting Regions of Interest in Large Multi-Scale Images for Cancer
Pathology
- Title(参考訳): 癌病理における大規模マルチスケール画像における関心領域の選択
- Authors: Rui Aguiar, Jon Braatz
- Abstract要約: 顕微鏡スライドの高解像度スキャンは、がん病理学者が、複数のスケールと解像度でスライド画像内の特徴の測定に基づいて、がんの存在、サブタイプ、および重症度に関する結論に達するのに十分な情報を提供する。
肝癌,肝細胞癌 (HCC) と胆管癌 (CC) の2種類の1種を含む肝病理組織スライドにおいて,WSIを段階的に拡大して興味領域(ROI)を検出するための強化学習とビームサーチに基づくアプローチを検討する。
これらのROIは病理医に直接提示され、測定と診断を助けるか、または使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent breakthroughs in object detection and image classification using
Convolutional Neural Networks (CNNs) are revolutionizing the state of the art
in medical imaging, and microscopy in particular presents abundant
opportunities for computer vision algorithms to assist medical professionals in
diagnosis of diseases ranging from malaria to cancer. High resolution scans of
microscopy slides called Whole Slide Images (WSIs) offer enough information for
a cancer pathologist to come to a conclusion regarding cancer presence,
subtype, and severity based on measurements of features within the slide image
at multiple scales and resolutions. WSIs' extremely high resolutions and
feature scales ranging from gross anatomical structures down to cell nuclei
preclude the use of standard CNN models for object detection and
classification, which have typically been designed for images with dimensions
in the hundreds of pixels and with objects on the order of the size of the
image itself. We explore parallel approaches based on Reinforcement Learning
and Beam Search to learn to progressively zoom into the WSI to detect Regions
of Interest (ROIs) in liver pathology slides containing one of two types of
liver cancer, namely Hepatocellular Carcinoma (HCC) and Cholangiocarcinoma
(CC). These ROIs can then be presented directly to the pathologist to aid in
measurement and diagnosis or be used for automated classification of tumor
subtype.
- Abstract(参考訳): 最近の畳み込みニューラルネットワーク(cnns)を用いた物体検出と画像分類のブレークスルーは、医療画像の最先端に革命をもたらしており、特に顕微鏡は、マラリアからがんに至る疾患の診断において、医療従事者を支援するコンピュータビジョンアルゴリズムの豊富な機会を提供している。
Whole Slide Images(WSIs)と呼ばれる顕微鏡スライドの高解像度スキャンは、がん病理学者が複数のスケールと解像度でスライド画像内の特徴の測定に基づいて、がんの存在、サブタイプ、重症度に関する結論を出すのに十分な情報を提供する。
wsisの超高分解能と特徴尺度は、全体解剖学的構造から細胞核まで幅広いため、オブジェクト検出と分類に標準のcnnモデルを使用することを妨げている。
肝癌,肝細胞癌 (HCC) と胆管癌 (CC) の2種類のうちの1つを含む肝病理組織スライドにおいて,WSI を段階的に拡大して興味の領域 (ROI) を検出するための並列アプローチについて検討した。
これらのroisは、測定と診断を助けるために病理医に直接提示したり、腫瘍亜型の自動分類に使用できる。
関連論文リスト
- HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGymは、医師の実際の過程を模倣して、スライド画像全体の診断を促進することを目的としている。
私たちは、WSIベースのシナリオと選択された地域ベースのシナリオを含む、さまざまな臓器や癌のシナリオを提供しています。
論文 参考訳(メタデータ) (2024-08-16T17:19:07Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images [3.1118773046912382]
がん診断のためのコンテキスト認識型マルチインスタンス学習(CAMIL)アーキテクチャを提案する。
CAMILは隣接する制約のある注意を取り入れて、WSI(Whole Slide Images)内のタイル間の依存関係を考慮し、コンテキスト制約を事前の知識として統合する。
CAMILは非小細胞肺癌(TCGA-NSCLC)の亜型であり,リンパ節転移は検出され,AUCは97.5%,95.9%,88.1%であった。
論文 参考訳(メタデータ) (2023-05-09T10:06:37Z) - MultiNet with Transformers: A Model for Cancer Diagnosis Using Images [8.686667049158476]
医用画像のマルチクラス分類のための独自のディープニューラルネットワーク設計を提供する。
データ収集機能を活用し,より正確な分類を行うために,トランスフォーマーをマルチクラスフレームワークに組み込んだ。
論文 参考訳(メタデータ) (2023-01-21T20:53:57Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
超高分解能超音波局在顕微鏡は毛細血管レベルでの微小血管のイメージングを可能にする。
この作業では、これらの課題に対処するために、信号構造を効果的に活用するディープニューラルネットワークアーキテクチャを使用します。
トレーニングしたネットワークを利用することで,従来のPSF知識を必要とせず,UCAの分離性も必要とせず,短時間で微小血管構造を復元する。
論文 参考訳(メタデータ) (2021-07-12T09:04:20Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
高分解能スライドスキャンにおけるマルチスケール腫瘍(キメラ細胞)検出アルゴリズムを提案する。
提案手法では,CNNの異なる層における有効受容場を改良し,幅広いスケールの物体を1つの前方通過で検出する。
論文 参考訳(メタデータ) (2020-10-01T18:56:46Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z) - Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype
Classification with Unannotated Histopathological Images [16.02231907106384]
我々は,マルチインスタンス,ドメイン逆数,マルチスケール学習フレームワークを効果的に組み合わせ,CNNに基づく癌サブタイプ分類法を開発した。
分類性能は標準のCNNや他の従来の方法よりも有意に優れており, 精度は標準の病理医と比較して良好であった。
論文 参考訳(メタデータ) (2020-01-06T14:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。