論文の概要: News Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2007.02238v1
- Date: Sun, 5 Jul 2020 05:15:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 08:03:48.878615
- Title: News Sentiment Analysis
- Title(参考訳): ニュースセンチメント分析
- Authors: Antony Samuels, John Mcgonical
- Abstract要約: 本稿では,レキシコンを用いたニュース記事の感情分析手法を提案する。
この実験はBBCのニュースデータセットで実施されており、採用されたアプローチの適用性と妥当性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Modern technological era has reshaped traditional lifestyle in several
domains. The medium of publishing news and events has become faster with the
advancement of Information Technology. IT has also been flooded with immense
amounts of data, which is being published every minute of every day, by
millions of users, in the shape of comments, blogs, news sharing through blogs,
social media micro-blogging websites and many more. Manual traversal of such
huge data is a challenging job, thus, sophisticated methods are acquired to
perform this task automatically and efficiently. News reports events that
comprise of emotions - good, bad, neutral. Sentiment analysis is utilized to
investigate human emotions present in textual information. This paper presents
a lexicon-based approach for sentiment analysis of news articles. The
experiments have been performed on BBC news data set, which expresses the
applicability and validation of the adopted approach.
- Abstract(参考訳): 近代の技術的時代は、いくつかの領域で伝統的な生活様式を変えてきた。
情報技術の進歩に伴い,ニュースやイベントの出版が急速に進んでいる。
何百万というユーザーが毎日、コメントやブログ、ブログ経由のニュース共有、ソーシャルメディアのマイクロブログサイトなど、大量のデータを毎日発行している。
このような膨大なデータの手動移動は困難な作業であり、このタスクを自動かつ効率的に実行するための高度な手法が取得される。
ニュースは、良い、悪い、中立の感情から成るイベントを報告する。
感性分析を用いて、テキスト情報に含まれる人間の感情を調べる。
本稿では,レキシコンを用いたニュース記事の感情分析手法を提案する。
実験はbbcニュースデータセットで行われ、採用したアプローチの適用可能性と妥当性が示されている。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Types of Approaches, Applications and Challenges in the Development of
Sentiment Analysis Systems [0.0]
知覚分析は自然言語処理と機械学習の重要な応用の1つである。
何百万ものコメントが毎日記録され、大量の構造化されていないテキストデータを生成する。
論文 参考訳(メタデータ) (2023-03-09T15:18:34Z) - A Review on Text-Based Emotion Detection -- Techniques, Applications,
Datasets, and Future Directions [4.257210316104905]
本稿では,2005年から2021年にかけてのテキストによる感情検出において,既存の文献の体系的な文献レビューを行う。
このレビューでは、IEEE、Science Direct、Scoopus、Web of Scienceの63の研究論文を精査し、4つの主要な研究課題に対処している。
様々な感情モデル、テクニック、特徴抽出方法、データセット、今後の方向性に関する研究課題についても概説した。
論文 参考訳(メタデータ) (2022-04-26T15:20:00Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - A Review of Web Infodemic Analysis and Detection Trends across
Multi-modalities using Deep Neural Networks [3.42658286826597]
フェイクニュース検出は最も分析され、顕著な研究分野の1つである。
Facebook、Reddit、WhatsApp、YouTube、その他のソーシャルアプリケーションは、この新興分野で徐々に注目を集めている。
このレビューは主に、画像、ビデオ、およびそれらのテキストの組み合わせを含むマルチモーダルフェイクニュース検出技術を扱う。
論文 参考訳(メタデータ) (2021-11-23T16:02:28Z) - Fake News Detection: Experiments and Approaches beyond Linguistic
Features [0.0]
ニュース記事に関連付けられた信頼性情報とメタデータは、結果の改善に利用されてきた。
実験はまた、モデリングの正当性や証拠が、どのようにしてより良い結果をもたらすかを示す。
論文 参考訳(メタデータ) (2021-09-27T10:00:44Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
我々は、44名のレイト参加者に、ニュース記事を含む投稿を含むソーシャルメディアフィードをさりげなく読み取らせるという、視線追跡研究を提示した。
第2回では,参加者に対して,これらの記事の真偽を判断するよう求めた。
また、同様のシナリオを用いたフォローアップ定性的な研究についても述べるが、今回は7人の専門家によるフェイクニュースアノテータを用いた。
論文 参考訳(メタデータ) (2021-09-26T08:11:17Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
我々は、画像やキャプションを含む機械生成ニュースに対して、より現実的で挑戦的な対策を導入する。
敵が悪用できる可能性のある弱点を特定するために、4つの異なる種類の生成された記事からなるNeuralNewsデータセットを作成します。
ユーザ実験から得られた貴重な知見に加えて,視覚的意味的不整合の検出にもとづく比較的効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-16T14:13:15Z) - A Deep Learning Approach for Automatic Detection of Fake News [47.00462375817434]
複数のドメインのオンラインニュースコンテンツにおいて、偽ニュース検出問題を解決するためのディープラーニングに基づく2つのモデルを提案する。
我々は、最近リリースされたFakeNews AMTとCelebrityという2つのデータセットを用いて、フェイクニュース検出のための手法を評価した。
論文 参考訳(メタデータ) (2020-05-11T09:07:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。