論文の概要: Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection
- arxiv url: http://arxiv.org/abs/2309.16424v1
- Date: Thu, 28 Sep 2023 13:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 14:16:18.458555
- Title: Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection
- Title(参考訳): Prompt-and-Align:Few-Shot Fakeニュース検出のためのPrompt-based Socialアライメント
- Authors: Jiaying Wu, Shen Li, Ailin Deng, Miao Xiong, Bryan Hooi
- Abstract要約: プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
- 参考スコア(独自算出の注目度): 50.07850264495737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite considerable advances in automated fake news detection, due to the
timely nature of news, it remains a critical open question how to effectively
predict the veracity of news articles based on limited fact-checks. Existing
approaches typically follow a "Train-from-Scratch" paradigm, which is
fundamentally bounded by the availability of large-scale annotated data. While
expressive pre-trained language models (PLMs) have been adapted in a
"Pre-Train-and-Fine-Tune" manner, the inconsistency between pre-training and
downstream objectives also requires costly task-specific supervision. In this
paper, we propose "Prompt-and-Align" (P&A), a novel prompt-based paradigm for
few-shot fake news detection that jointly leverages the pre-trained knowledge
in PLMs and the social context topology. Our approach mitigates label scarcity
by wrapping the news article in a task-related textual prompt, which is then
processed by the PLM to directly elicit task-specific knowledge. To supplement
the PLM with social context without inducing additional training overheads,
motivated by empirical observation on user veracity consistency (i.e., social
users tend to consume news of the same veracity type), we further construct a
news proximity graph among news articles to capture the veracity-consistent
signals in shared readerships, and align the prompting predictions along the
graph edges in a confidence-informed manner. Extensive experiments on three
real-world benchmarks demonstrate that P&A sets new states-of-the-art for
few-shot fake news detection performance by significant margins.
- Abstract(参考訳): ニュースのタイムリーな性質のため、自動フェイクニュース検出の大幅な進歩にもかかわらず、限られたファクトチェックに基づいてニュース記事の有効性を効果的に予測する方法は、依然として決定的な疑問である。
既存のアプローチは通常、"トレイン・トゥ・スクラッチ(train-from-scratch)"パラダイムに従っている。
表現型事前学習言語モデル(plm)は「事前訓練と微調整」の方法で適応されているが、事前訓練と下流目標の矛盾もまたコストのかかるタスク固有の監督を必要とする。
本稿では,PLMにおける事前学習知識と社会的文脈トポロジーを併用した,数発のフェイクニュース検出のための新しいプロンプトベースパラダイムであるPrompt-and-Align(P&A)を提案する。
提案手法では,ニュース記事をタスク関連テキストプロンプトにラップすることでラベル不足を軽減し,PLMがタスク固有の知識を直接抽出する。
PLMを付加的なトレーニングオーバーヘッドを生じさせることなく補うために、利用者の正確性に関する経験的な観察(例えば、ソーシャルユーザが同じ正確性タイプのニュースを消費する傾向にある)により、ニュース記事間でニュース近接グラフを構築し、共有読者の正確性に一貫性のある信号を捕捉し、グラフエッジに沿った予測を自信的に調整する。
3つの実世界のベンチマークに関する広範囲な実験により、p&aは新しい最先端のフェイクニュース検出性能をかなりのマージンで設定できることが示されている。
関連論文リスト
- Revisiting Fake News Detection: Towards Temporality-aware Evaluation by Leveraging Engagement Earliness [22.349521957987672]
ソーシャルグラフに基づく偽ニュース検出は、社会的文脈を利用して偽情報を含むニュース記事を特定することを目的としている。
我々は、現実のシナリオを模倣するより現実的な評価スキームを定式化する。
従来の手法の識別能力は,この新しい設定下で急激に低下することを示す。
論文 参考訳(メタデータ) (2024-11-19T05:08:00Z) - Exploring the Deceptive Power of LLM-Generated Fake News: A Study of Real-World Detection Challenges [21.425647152424585]
条件付き変分オートエンコーダライズプロンプト(VLPrompt)と呼ばれる強力なフェイクニュース攻撃手法を提案する。
現行のメソッドとは異なり、VLPromptはコンテキストコヒーレンスを維持しながら追加のデータ収集を不要にする。
さまざまな検出方法や新しい人間の研究指標を含む実験を行い,その性能をデータセット上で評価した。
論文 参考訳(メタデータ) (2024-03-27T04:39:18Z) - MSynFD: Multi-hop Syntax aware Fake News Detection [27.046529059563863]
ソーシャルメディアプラットフォームは、偽ニュースを急速に拡散させ、われわれの現実社会に脅威を与えている。
既存の方法は、フェイクニュースの検出を強化するために、マルチモーダルデータまたはコンテキスト情報を使用する。
本稿では,偽ニュースの微妙なひねりに対処するための補完構文情報を含む,新しいマルチホップ構文認識型偽ニュース検出手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T05:40:33Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Context-faithful Prompting for Large Language Models [51.194410884263135]
大言語モデル(LLM)は世界事実に関するパラメトリック知識を符号化する。
パラメトリック知識への依存は、文脈的手がかりを見落とし、文脈に敏感なNLPタスクにおいて誤った予測をもたらす可能性がある。
我々は, LLMの文脈的忠実度を, 知識の衝突と, 棄権による予測の2つの側面で評価し, 向上する。
論文 参考訳(メタデータ) (2023-03-20T17:54:58Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
フェイクニュース検出を自動化するフレームワークであるMPSC(Multi-Policy Statement Checker)を導入する。
MPSCは、深層学習技術を用いて、文自体とその関連するニュース記事を分析し、それが信頼できるか疑わしいかを予測する。
論文 参考訳(メタデータ) (2022-06-01T21:25:21Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。