論文の概要: A Broad-Coverage Deep Semantic Lexicon for Verbs
- arxiv url: http://arxiv.org/abs/2007.02670v1
- Date: Mon, 6 Jul 2020 12:03:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 02:28:05.237934
- Title: A Broad-Coverage Deep Semantic Lexicon for Verbs
- Title(参考訳): 動詞の広義の深い意味の語彙
- Authors: James Allen, Hannah An, Ritwik Bose, Will de Beaumont and Choh Man
Teng
- Abstract要約: COLLIE-Vは動詞のための深い語彙資源であり、WordNetと既存のリソースを満足または超越する意味的な詳細を網羅している。
新しい存在論的概念と語彙的エントリは、意味的役割の選好とentailment axiomとともに自動的に導出される。
- 参考スコア(独自算出の注目度): 3.219005794369446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Progress on deep language understanding is inhibited by the lack of a broad
coverage lexicon that connects linguistic behavior to ontological concepts and
axioms. We have developed COLLIE-V, a deep lexical resource for verbs, with the
coverage of WordNet and syntactic and semantic details that meet or exceed
existing resources. Bootstrapping from a hand-built lexicon and ontology, new
ontological concepts and lexical entries, together with semantic role
preferences and entailment axioms, are automatically derived by combining
multiple constraints from parsing dictionary definitions and examples. We
evaluated the accuracy of the technique along a number of different dimensions
and were able to obtain high accuracy in deriving new concepts and lexical
entries. COLLIE-V is publicly available.
- Abstract(参考訳): 深層言語理解の進展は、言語行動と存在論的概念と公理をつなぐ広い範囲の語彙の欠如によって抑制される。
我々は、wordnetと既存のリソースを満たし、あるいは超えた構文的および意味的詳細をカバーする、動詞の深い語彙的リソースである collie-v を開発した。
手作りの辞書とオントロジーからのブートストラップ、新しい存在論的概念と語彙的エントリ、セマンティックな役割選好とentailment axiomsは、辞書の定義や例を解析することで複数の制約を組み合わせることで自動的に導出される。
本手法の精度を複数の異なる次元に沿って評価し,新しい概念や語彙項目の導出において高い精度を得ることができた。
COLLIE-Vは一般公開されている。
関連論文リスト
- A Survey on Lexical Ambiguity Detection and Word Sense Disambiguation [0.0]
本稿では自然言語処理(NLP)分野における言語におけるあいまいさの理解と解決に焦点を当てた手法について検討する。
ディープラーニング技術から、WordNetのような語彙的リソースや知識グラフの活用まで、さまざまなアプローチを概説している。
本研究は, 感覚アノテートコーパスの不足, 非公式な臨床テキストの複雑さなど, この分野における永続的な課題を明らかにした。
論文 参考訳(メタデータ) (2024-03-24T12:58:48Z) - Domain Embeddings for Generating Complex Descriptions of Concepts in
Italian Language [65.268245109828]
電子辞書から抽出した言語情報と語彙情報に富んだ分布意味資源を提案する。
リソースは21のドメイン固有の行列と1つの包括的なマトリックスとグラフィカルユーザインタフェースから構成される。
本モデルは,具体的概念知識に直接関連した行列を選択することにより,概念の意味的記述の推論を容易にする。
論文 参考訳(メタデータ) (2024-02-26T15:04:35Z) - Multi-Relational Hyperbolic Word Embeddings from Natural Language
Definitions [5.763375492057694]
本稿では、そのような構造を明示的に活用し、定義から単語埋め込みを導出するマルチリレーショナルモデルを提案する。
経験的な分析は、フレームワークが望ましい構造的制約を課すのに役立つことを示している。
実験により、ユークリッド語よりもハイパーボリック語の埋め込みの方が優れていることが示された。
論文 参考訳(メタデータ) (2023-05-12T08:16:06Z) - A Comprehensive Empirical Evaluation of Existing Word Embedding
Approaches [5.065947993017158]
既存の単語埋め込み手法の特徴を概説し,多くの分類タスクについて解析する。
伝統的なアプローチでは、主に単語表現を生成するために行列分解を使い、言語の意味的および構文的規則性をうまく捉えることができない。
一方、ニューラルネットワークに基づくアプローチは、言語の洗練された規則性を捕捉し、生成した単語表現における単語関係を保存することができる。
論文 参考訳(メタデータ) (2023-03-13T15:34:19Z) - SensePOLAR: Word sense aware interpretability for pre-trained contextual
word embeddings [4.479834103607384]
単語埋め込みに解釈可能性を加えることは、テキスト表現における活発な研究の領域である。
本稿では,従来のPOLARフレームワークを拡張したSensePOLARを提案する。
論文 参考訳(メタデータ) (2023-01-11T20:25:53Z) - Latent Topology Induction for Understanding Contextualized
Representations [84.7918739062235]
本研究では,文脈的埋め込みの表現空間について検討し,大規模言語モデルの隠れトポロジについて考察する。
文脈化表現の言語特性を要約した潜在状態のネットワークが存在することを示す。
論文 参考訳(メタデータ) (2022-06-03T11:22:48Z) - LexSubCon: Integrating Knowledge from Lexical Resources into Contextual
Embeddings for Lexical Substitution [76.615287796753]
本稿では,コンテキスト埋め込みモデルに基づくエンドツーエンドの語彙置換フレームワークであるLexSubConを紹介する。
これは文脈情報と構造化語彙資源からの知識を組み合わせることで達成される。
我々の実験によると、LexSubConはLS07とCoInCoベンチマークデータセットで従来の最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-11T21:25:56Z) - Enhanced word embeddings using multi-semantic representation through
lexical chains [1.8199326045904998]
フレキシブル・レキシカル・チェーンIIと固定レキシカル・チェーンIIという2つの新しいアルゴリズムを提案する。
これらのアルゴリズムは、語彙連鎖から派生した意味関係、語彙データベースからの以前の知識、および単一のシステムを形成するビルディングブロックとしての単語埋め込みにおける分布仮説の堅牢性を組み合わせている。
その結果、語彙チェーンと単語埋め込み表現の統合は、より複雑なシステムに対しても、最先端の結果を維持します。
論文 参考訳(メタデータ) (2021-01-22T09:43:33Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - Word Sense Disambiguation for 158 Languages using Word Embeddings Only [80.79437083582643]
文脈における単語感覚の曖昧さは人間にとって容易であるが、自動的アプローチでは大きな課題である。
本稿では,学習前の標準単語埋め込みモデルを入力として,完全に学習した単語認識のインベントリを誘導する手法を提案する。
この手法を用いて、158の言語に対して、事前訓練されたfastText単語の埋め込みに基づいて、センスインベントリのコレクションを誘導する。
論文 参考訳(メタデータ) (2020-03-14T14:50:04Z) - Multi-SimLex: A Large-Scale Evaluation of Multilingual and Cross-Lingual
Lexical Semantic Similarity [67.36239720463657]
Multi-SimLexは、12の異なる言語のデータセットをカバーする大規模な語彙リソースと評価ベンチマークである。
各言語データセットは、意味的類似性の語彙的関係に注釈付けされ、1,888のセマンティック・アライメント・コンセプト・ペアを含む。
言語間の概念の整合性のため、66の言語間セマンティック類似性データセットを提供する。
論文 参考訳(メタデータ) (2020-03-10T17:17:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。