論文の概要: Towards Game-Playing AI Benchmarks via Performance Reporting Standards
- arxiv url: http://arxiv.org/abs/2007.02742v1
- Date: Mon, 6 Jul 2020 13:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 02:37:19.179517
- Title: Towards Game-Playing AI Benchmarks via Performance Reporting Standards
- Title(参考訳): パフォーマンス報告標準によるAIベンチマークのゲームプレイに向けて
- Authors: Vanessa Volz and Boris Naujoks
- Abstract要約: 本稿では,AIゲームプレイパフォーマンスの報告ガイドラインを提案し,従えば,異なるAIアプローチの非バイアス比較に適した情報を提供する。
私たちが説明するビジョンは、さまざまなAIアルゴリズムの振る舞いに関するより一般的な結論を引き出すために、このようなガイドラインに基づいたベンチマークとコンペを構築することです。
- 参考スコア(独自算出の注目度): 0.9137554315375919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While games have been used extensively as milestones to evaluate game-playing
AI, there exists no standardised framework for reporting the obtained
observations. As a result, it remains difficult to draw general conclusions
about the strengths and weaknesses of different game-playing AI algorithms. In
this paper, we propose reporting guidelines for AI game-playing performance
that, if followed, provide information suitable for unbiased comparisons
between different AI approaches. The vision we describe is to build benchmarks
and competitions based on such guidelines in order to be able to draw more
general conclusions about the behaviour of different AI algorithms, as well as
the types of challenges different games pose.
- Abstract(参考訳): ゲームは、ゲームプレイングAIを評価するマイルストーンとして広く使用されているが、得られた観察を報告するための標準化されたフレームワークは存在しない。
結果として、異なるゲームプレイングaiアルゴリズムの強みと弱みに関する一般的な結論を引き出すのは難しいままである。
本稿では,AIゲームプレイパフォーマンスの報告ガイドラインを提案し,従えば,異なるAIアプローチ間の非バイアス比較に適した情報を提供する。
私たちが説明するビジョンは、異なるAIアルゴリズムの振る舞いと異なるゲームがもたらす課題のタイプについて、より一般的な結論を導き出すために、そのようなガイドラインに基づいたベンチマークとコンペを構築することです。
関連論文リスト
- Preference-conditioned Pixel-based AI Agent For Game Testing [1.5059676044537105]
環境とのインタラクションによって学習するゲームテストAIエージェントは、これらの課題を軽減する可能性がある。
本稿では,ユーザの好みに応じて設定された環境を探索しながら,主に画素ベースの状態観測に依存するエージェント設計を提案する。
実AAAゲームにおける多くの側面に類似した複雑なオープンワールド環境において、調査対象とテスト実行品質に対して、我々のエージェントは、最先端の画素ベースのゲームテストエージェントよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-08-18T04:19:36Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - WinoGAViL: Gamified Association Benchmark to Challenge
Vision-and-Language Models [91.92346150646007]
本研究では,視覚・言語関係を収集するオンラインゲームであるWinoGAViLを紹介する。
私たちはこのゲームを使って3.5Kのインスタンスを収集し、それらが人間には直感的だが最先端のAIモデルには挑戦的であることを発見した。
我々の分析とプレイヤーからのフィードバックは、収集された協会が多様な推論スキルを必要とすることを示している。
論文 参考訳(メタデータ) (2022-07-25T23:57:44Z) - Towards Objective Metrics for Procedurally Generated Video Game Levels [2.320417845168326]
シミュレーションに基づく評価指標を2つ導入し, 生成レベルの多様性と難易度を測定した。
我々の多様性指標は、現在の方法よりも、レベルサイズや表現の変化に対して堅牢であることを示す。
難易度基準は、テスト済みのドメインの1つで既存の難易度推定と相関するが、他のドメインではいくつかの課題に直面している。
論文 参考訳(メタデータ) (2022-01-25T14:13:50Z) - Spatial State-Action Features for General Games [5.849736173068868]
汎用ゲームのための空間状態対応機能の設計と効率的な実装を定式化する。
これらは、局所的な状態の変数にマッチするかどうかに基づいて、アクションをインセンティブまたは非インセンティブ化するようにトレーニングできるパターンである。
任意の機能セットに対して,アクティブな機能を評価するための効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-17T13:34:04Z) - CommonsenseQA 2.0: Exposing the Limits of AI through Gamification [126.85096257968414]
現代自然言語理解モデルの能力をテストするベンチマークを構築した。
本研究では,データ構築の枠組みとしてゲーミフィケーションを提案する。
論文 参考訳(メタデータ) (2022-01-14T06:49:15Z) - Revisiting Game Representations: The Hidden Costs of Efficiency in
Sequential Decision-making Algorithms [0.6749750044497732]
不完全な情報の下でのシーケンシャルな意思決定アルゴリズムの進歩は、大きなゲームで顕著な成功を収めている。
これらのアルゴリズムは伝統的に広義のゲーム形式を用いてゲームを形式化する。
プレイヤー固有の情報状態木に基づく特殊表現の使用が,一般的な回避策であることを示す。
論文 参考訳(メタデータ) (2021-12-20T22:34:19Z) - Contextual Games: Multi-Agent Learning with Side Information [57.76996806603094]
各ラウンドでコンテキスト情報によって駆動されるコンテキストゲームの新しいクラスを定式化する。
カーネルベースの規則性仮定を用いて、異なるコンテキストとゲーム結果の相関関係をモデル化する。
本研究では,個々のプレイヤーの文脈的後悔を最小限に抑えるために,そのような相関を利用した新しいオンライン(メタ)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-13T18:37:37Z) - Rinascimento: searching the behaviour space of Splendor [0.0]
本研究の目的は,ゲーム内の行動空間(BSpace)を一般手法を用いてマッピングすることである。
特に、イベント値関数の使用は、古典的なスコアベースの報酬信号に基づくエージェントと比較して、BSpaceのカバレッジが著しく改善されている。
論文 参考訳(メタデータ) (2021-06-15T18:46:57Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - An Empirical Study on the Generalization Power of Neural Representations
Learned via Visual Guessing Games [79.23847247132345]
本研究は,視覚質問応答(VQA)のような新しいNLP下流タスクにおいて,後から実行を依頼されたとき,人工エージェントが推測ゲームでどの程度の利益を得ることができるかを検討する。
提案手法は,1) エージェントがうまく推理ゲームを模倣することを学習する教師あり学習シナリオ,2) エージェントが単独でプレイする新しい方法,すなわち,反復経験学習(SPIEL)によるセルフプレイ(Self-play)を提案する。
論文 参考訳(メタデータ) (2021-01-31T10:30:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。