論文の概要: FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
- arxiv url: http://arxiv.org/abs/2504.14325v2
- Date: Tue, 22 Apr 2025 11:56:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 11:55:44.443585
- Title: FAIRGAME: a Framework for AI Agents Bias Recognition using Game Theory
- Title(参考訳): FAIRGAME:ゲーム理論を用いたAIエージェントのバイアス認識フレームワーク
- Authors: Alessio Buscemi, Daniele Proverbio, Alessandro Di Stefano, The Anh Han, German Castignani, Pietro Liò,
- Abstract要約: ゲーム理論を用いたAIエージェントバイアス認識フレームワークFAIRGAMEを提案する。
我々は,AIエージェント間の人気ゲームにおけるバイアスのある結果を明らかにするために,その実装と利用について述べる。
全体として、FAIRGAMEはユーザーが望むゲームやシナリオを確実に簡単にシミュレートできる。
- 参考スコア(独自算出の注目度): 51.96049148869987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
- Abstract(参考訳): マルチエージェントアプリケーションでAIエージェントを対話させることは、AI成果の解釈可能性と予測に複雑さの層を追加します。
ゲーム理論は、エージェント間の戦略的相互作用を捕捉し解釈する強力なモデルを提供するが、結果の比較と解釈を可能にするために再現可能で標準化されたユーザーフレンドリーなITフレームワークをサポートする必要がある。
この目的のために,ゲーム理論を用いたAIエージェントバイアス認識フレームワークFAIRGAMEを提案する。
我々はその実装と使用法を説明し、AIエージェント間の人気ゲームにおけるバイアスのある結果を明らかにするために、採用されているLarge Language Model(LLM)および使用言語に依存し、エージェントの性格特性や戦略的知識にも依存する。
全体として、FAIRGAMEはユーザーが希望するゲームやシナリオを確実にかつ容易にシミュレートし、シミュレーションキャンペーンやゲーム理論の予測結果と比較し、バイアスの体系的な発見、戦略的相互作用からの創発的行動の予測、LLMエージェントを用いた戦略的意思決定に関するさらなる研究の強化を可能にする。
関連論文リスト
- Do LLMs trust AI regulation? Emerging behaviour of game-theoretic LLM agents [61.132523071109354]
本稿では、異なる規制シナリオ下での戦略選択をモデル化する、AI開発者、規制当局、ユーザ間の相互作用について検討する。
我々の研究は、純粋なゲーム理論エージェントよりも「悲観的」な姿勢を採用する傾向にある戦略的AIエージェントの出現する振る舞いを特定する。
論文 参考訳(メタデータ) (2025-04-11T15:41:21Z) - Expectation vs. Reality: Towards Verification of Psychological Games [18.30789345402813]
心理学ゲーム(PG)は、信念に依存した動機を持つエージェントをモデル化し分析する方法として開発された。
本稿では,ゲームの公式検証ツールであるPRISM-gamesでPGを解き,実装する手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T14:41:52Z) - The Double-Edged Sword of Behavioral Responses in Strategic Classification: Theory and User Studies [7.695481260089599]
本稿では,アルゴリズムに対する人間の反応の行動バイアスを考慮した戦略的分類モデルを提案する。
分類器の誤認が、偏りのあるエージェントと合理的なエージェントの反応の異なるタイプの相違をもたらすことを示す。
行動バイアスのある戦略的エージェントは、完全に合理的な戦略エージェントと比較して、会社に利益をもたらすか、または(予想外の)害を与える可能性があることを示す。
論文 参考訳(メタデータ) (2024-10-23T17:42:54Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
本稿では,対戦相手と防御エージェントの反復的相互作用を含む2エージェントゲームのレンズによるアライメントについて検討する。
この反復的強化学習最適化がエージェントによって誘導されるゲームに対するナッシュ平衡に収束することを理論的に実証する。
安全シナリオにおける実験結果から、このような競争環境下での学習は、完全に訓練するエージェントだけでなく、敵エージェントと防御エージェントの両方に対する一般化能力の向上したポリシーにつながることが示されている。
論文 参考訳(メタデータ) (2024-06-16T15:24:50Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - ALYMPICS: LLM Agents Meet Game Theory -- Exploring Strategic
Decision-Making with AI Agents [77.34720446306419]
Alympicsは、ゲーム理論の研究にLarge Language Model (LLM)エージェントを利用する、体系的なシミュレーションフレームワークである。
Alympicsは、複雑なゲーム理論の問題を研究するための汎用的なプラットフォームを作成する。
論文 参考訳(メタデータ) (2023-11-06T16:03:46Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。