論文の概要: Meta Learning for Causal Direction
- arxiv url: http://arxiv.org/abs/2007.02809v2
- Date: Mon, 22 Feb 2021 01:39:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-13 01:33:09.958045
- Title: Meta Learning for Causal Direction
- Title(参考訳): 因果方向のメタ学習
- Authors: Jean-Francois Ton, Dino Sejdinovic, Kenji Fukumizu
- Abstract要約: 小型データ設定における原因と効果の区別を可能にする新しい生成モデルを提案する。
提案手法は, 各種合成データと実世界のデータを用いて実証し, 種々のデータセットサイズにおける方向検出の精度を高い精度で維持可能であることを示す。
- 参考スコア(独自算出の注目度): 29.00522306460408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inaccessibility of controlled randomized trials due to inherent
constraints in many fields of science has been a fundamental issue in causal
inference. In this paper, we focus on distinguishing the cause from effect in
the bivariate setting under limited observational data. Based on recent
developments in meta learning as well as in causal inference, we introduce a
novel generative model that allows distinguishing cause and effect in the small
data setting. Using a learnt task variable that contains distributional
information of each dataset, we propose an end-to-end algorithm that makes use
of similar training datasets at test time. We demonstrate our method on various
synthetic as well as real-world data and show that it is able to maintain high
accuracy in detecting directions across varying dataset sizes.
- Abstract(参考訳): 科学の多くの分野における固有の制約による制御されたランダム化試行の不可能性は因果推論において根本的な問題となっている。
本稿では,観測データに制限された二変量設定における影響要因の識別に焦点をあてる。
メタ学習と因果推論の最近の進展に基づき, 小規模データセットにおける原因と効果の識別を可能にする新しい生成モデルを提案する。
各データセットの分散情報を含む学習タスク変数を用いて、テスト時に同様のトレーニングデータセットを使用するエンドツーエンドアルゴリズムを提案する。
本手法は,様々な合成データと実世界のデータを用いて,様々なデータサイズにわたる方向検出において高い精度を維持することができることを示す。
関連論文リスト
- What is different between these datasets? [23.271594219577185]
同じドメイン内の2つの同等のデータセットは、異なる分布を持つ可能性がある。
本稿では,2つのデータセットを比較するための解釈可能な手法(ツールボックス)を提案する。
我々の手法は、説明品質と正確性の観点から比較および関連するアプローチよりも優れているだけでなく、データセットの違いを効果的に理解し軽減するための実用的な補完的な洞察を提供する。
論文 参考訳(メタデータ) (2024-03-08T19:52:39Z) - Causal disentanglement of multimodal data [1.589226862328831]
因果関係を持つ重要な特徴を発見するために,マルチモーダルデータと既知の物理を利用する因果表現学習アルゴリズム(causalPIMA)を導入する。
本研究は,完全教師なし環境下で重要な特徴を同時に発見しながら,解釈可能な因果構造を学習する能力を示すものである。
論文 参考訳(メタデータ) (2023-10-27T20:30:11Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Multiple Instance Learning for Detecting Anomalies over Sequential
Real-World Datasets [2.427831679672374]
MIL(Multiple Instance Learning)は、トレーニングデータセットにおけるラベルの不完全な知識に関する問題に対して有効であることが示されている。
MILに基づく定式化と,異なる設計決定に基づいて,このフレームワークの様々なアルゴリズムのインスタンス化を提案する。
このフレームワークは、さまざまな現実世界のアプリケーションドメインから生じる多様なデータセットをうまく一般化する。
論文 参考訳(メタデータ) (2022-10-04T16:02:09Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Multi-Source Causal Inference Using Control Variates [81.57072928775509]
本稿では,複数のデータソースから因果効果を推定するアルゴリズムを提案する。
理論的には、これはATE推定値の分散を減少させる。
このフレームワークを結果選択バイアスの下で観測データからの推論に適用する。
論文 参考訳(メタデータ) (2021-03-30T21:20:51Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Overcoming Conflicting Data when Updating a Neural Semantic Parser [5.471925005642665]
タスク指向のセマンティックパースモデルを更新するために、いくつかの例で所望の出力が変更されたときに、少量の新しいデータをどのように使うかを示す。
このような方法で更新を行う場合、潜在的な問題の1つは、競合するデータの存在である。
矛盾するデータの存在が更新の学習を著しく妨げていることを示し、その影響を軽減するためにいくつかの方法を模索する。
論文 参考訳(メタデータ) (2020-10-23T21:19:03Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。