論文の概要: Graph Embedding with Data Uncertainty
- arxiv url: http://arxiv.org/abs/2009.00505v1
- Date: Tue, 1 Sep 2020 15:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 00:25:30.167764
- Title: Graph Embedding with Data Uncertainty
- Title(参考訳): データ不確実性によるグラフ埋め込み
- Authors: Firas Laakom, Jenni Raitoharju, Nikolaos Passalis, Alexandros
Iosifidis, Moncef Gabbouj
- Abstract要約: スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
- 参考スコア(独自算出の注目度): 113.39838145450007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: spectral-based subspace learning is a common data preprocessing step in many
machine learning pipelines. The main aim is to learn a meaningful low
dimensional embedding of the data. However, most subspace learning methods do
not take into consideration possible measurement inaccuracies or artifacts that
can lead to data with high uncertainty. Thus, learning directly from raw data
can be misleading and can negatively impact the accuracy. In this paper, we
propose to model artifacts in training data using probability distributions;
each data point is represented by a Gaussian distribution centered at the
original data point and having a variance modeling its uncertainty. We
reformulate the Graph Embedding framework to make it suitable for learning from
distributions and we study as special cases the Linear Discriminant Analysis
and the Marginal Fisher Analysis techniques. Furthermore, we propose two
schemes for modeling data uncertainty based on pair-wise distances in an
unsupervised and a supervised contexts.
- Abstract(参考訳): スペクトルベースのサブスペース学習は、多くの機械学習パイプラインで一般的なデータ前処理ステップである。
主な目的は、データの有意義な低次元埋め込みを学ぶことである。
しかし、ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確性やアーティファクトを考慮していない。
したがって、生データから直接学習することは誤解を招く可能性があり、精度に悪影響を及ぼす可能性がある。
本稿では,各データポイントを元のデータポイントを中心とするガウス分布で表現し,その不確かさをモデル化する分散分布を持つ確率分布を用いて,トレーニングデータ内のアーチファクトをモデル化する。
グラフ埋め込みフレームワークを再構成して,分布から学習するのに適したものにし,特に線形識別分析法とマージナルフィッシャー分析法について検討する。
さらに,教師なしコンテキストと教師なしコンテキストのペア間距離に基づくデータ不確実性をモデル化するための2つのスキームを提案する。
関連論文リスト
- MissDiff: Training Diffusion Models on Tabular Data with Missing Values [29.894691645801597]
この研究は、欠落した値を持つデータから学習するための統一的で原則化された拡散ベースのフレームワークを示す。
まず、広く採用されている「インプット・ザ・ジェネレーション」パイプラインが、バイアスのある学習目標に繋がる可能性があることを観察する。
提案手法は,データ分布のスコアの学習に一貫性があることを証明し,提案手法は特定の場合において負の確率の上限として機能する。
論文 参考訳(メタデータ) (2023-07-02T03:49:47Z) - PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty [15.781915567005251]
本稿では,表現学習と不確実性定量化のための新しい代理モデルを提案する。
提案モデルでは、(潜在的に高次元の)データの次元的低減のためのニューラルネットワークアプローチと、データ分布を学習するための代理モデル手法を組み合わせる。
我々のモデルは,データの表現を学習し,(a)高次元データシステムにおける不確実性を推定し,(c)出力分布の高次モーメントを一致させることができる。
論文 参考訳(メタデータ) (2022-02-10T14:42:51Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z) - Testing for Typicality with Respect to an Ensemble of Learned
Distributions [5.850572971372637]
適合性のよい問題に対する一サンプルのアプローチは、オンラインテストに多大な計算上の利点をもたらす。
この設定において異常データを正しく否定する能力は、ベース分布のモデルの精度に依存する。
既成の正当性問題に対する既存の手法は、基底分布のモデルが学習されたという事実を考慮に入れない。
本稿では,アンサンブルの任意の構成員に対して,データが異常であれば異常データとなることを考慮し,密度モデルのアンサンブルを訓練することを提案する。
論文 参考訳(メタデータ) (2020-11-11T19:47:46Z) - Linear Tensor Projection Revealing Nonlinearity [0.294944680995069]
次元の減少は高次元データの学習に有効な方法である。
本稿では,元データ情報を可能な限り多く保持しつつ,予測精度を最大化する部分空間を探索する手法を提案する。
論文 参考訳(メタデータ) (2020-07-08T06:10:39Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。