論文の概要: Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis
of Intermediate-Severity Faults?
- arxiv url: http://arxiv.org/abs/2007.03167v2
- Date: Wed, 8 Jul 2020 23:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-12 18:49:58.329720
- Title: Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis
of Intermediate-Severity Faults?
- Title(参考訳): アンサンブル分類器は、中間欠性障害の検出と診断に十分強力か?
- Authors: Baihong Jin, Yingshui Tan, Yuxin Chen, Kameshwar Poolla, Alberto
Sangiovanni Vincentelli
- Abstract要約: 中間重度(IS)障害は、重度断層よりも軽度の症状を呈する。
トレーニングデータにIS故障例がないことは、FDD法に深刻なリスクをもたらす可能性がある。
本稿では,IS故障の検出と診断のためのより効果的なアンサンブルモデルの設計方法について論じる。
- 参考スコア(独自算出の注目度): 9.1591191545173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intermediate-Severity (IS) faults present milder symptoms compared to severe
faults, and are more difficult to detect and diagnose due to their close
resemblance to normal operating conditions. The lack of IS fault examples in
the training data can pose severe risks to Fault Detection and Diagnosis (FDD)
methods that are built upon Machine Learning (ML) techniques, because these
faults can be easily mistaken as normal operating conditions. Ensemble models
are widely applied in ML and are considered promising methods for detecting
out-of-distribution (OOD) data. We identify common pitfalls in these models
through extensive experiments with several popular ensemble models on two
real-world datasets. Then, we discuss how to design more effective ensemble
models for detecting and diagnosing IS faults.
- Abstract(参考訳): 中間重度(IS)断層は、重度断層よりも軽度な症状を示し、正常な手術条件に類似しているため、検出と診断が困難である。
トレーニングデータにおけるIS故障例の欠如は、機械学習(ML)技術に基づくフォールト検出・診断(FDD)手法に重大なリスクをもたらす可能性がある。
エンサンブルモデルはMLに広く適用されており、アウト・オブ・ディストリビューション(OOD)データを検出するための有望な方法と考えられている。
これらのモデルに共通する落とし穴を、2つの実世界のデータセット上のいくつかの一般的なアンサンブルモデルを用いて広範な実験によって同定する。
次に,is障害の検出と診断のための,より効率的なアンサンブルモデルの設計方法について述べる。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
本研究では,データ拡張とソフトコントラスト学習の組み合わせを導入し,より正確に状態行動の多面的特性を捉えることを目的としている。
この二重戦略は、正常な状態と異常な状態を区別するモデルの能力を著しく向上させ、複数のデータセットと設定で障害検出性能が著しく向上する。
論文 参考訳(メタデータ) (2024-05-25T14:48:04Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
電気モーターの故障検出と診断は、産業システムの安全かつ信頼性の高い運転を保証する上で最も重要である。
マシン故障診断のための既存のデータ駆動ディープラーニングアプローチは、大量のラベル付きサンプルに大きく依存している。
ラベル付きサンプルを少ない量で活用する基礎モデルに基づくアクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-27T03:25:12Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Generalizing Fault Detection Against Domain Shifts Using
Stratification-Aware Cross-Validation [4.731408120697983]
先天異常は重篤な症状よりも軽度の症状を呈する。
これらの異常は、容易に通常の動作条件と誤認することができる。
そこで本研究では,アンサンブル学習手法により,初期異常に対する性能の向上が期待できることを示す。
論文 参考訳(メタデータ) (2020-08-20T00:03:09Z) - Using Ensemble Classifiers to Detect Incipient Anomalies [12.947364178385637]
先天異常は重篤な症状よりも軽度の症状を呈する。
これらの異常は、容易に通常の動作条件と誤認することができる。
そこで本研究では,アンサンブル学習手法により,初期異常に対する性能の向上が期待できることを示す。
論文 参考訳(メタデータ) (2020-08-20T00:00:39Z) - Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning [3.8015092217142223]
モデルに依存しないメタラーニング(MAML)に基づく断層診断のための数発の学習フレームワークを提案する。
ケーススタディでは、提案したフレームワークは、シームズネットワークベースのベンチマーク研究よりも25%高い精度で全体の精度を達成している。
論文 参考訳(メタデータ) (2020-07-25T04:03:18Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。